

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

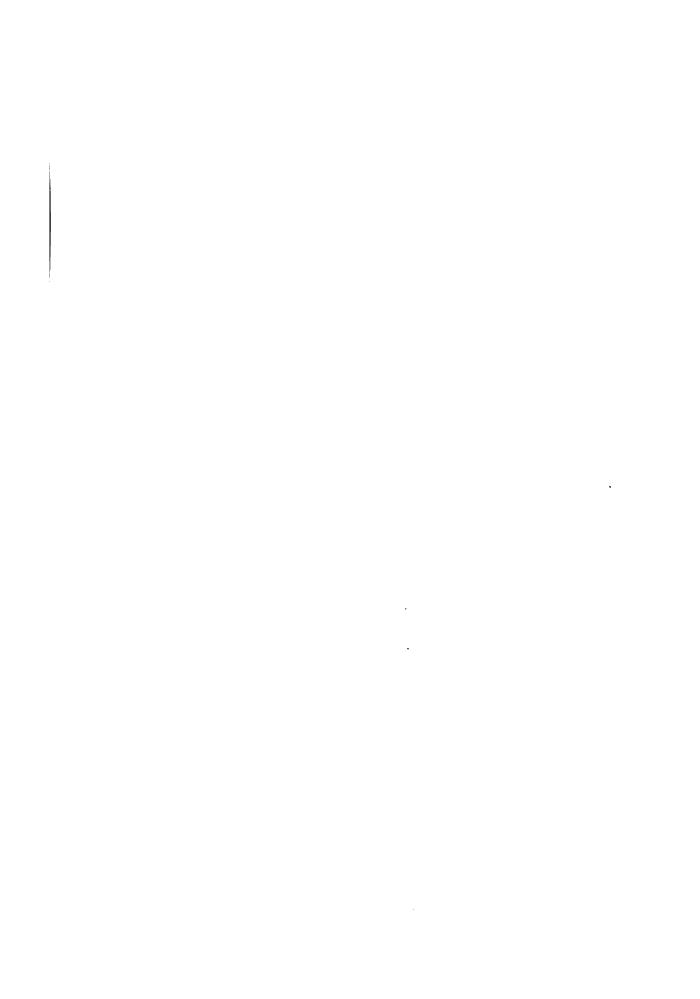
It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:


- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

			•	 	
		•			
	•				
		•		•	

THE

THERMODYNAMIC PROPERTIES OF AMMONIA

COMPUTED FOR THE USE OF ENGINEERS FROM NEW EXPERI-MENTAL DATA DERIVED FROM INVESTIGATIONS MADE AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

BY

FREDERICK G. KEYES AND ROBERT B. BROWNLEE

FIRST EDITION
FIRST THOUSAND

NEW YORK

JOHN WILEY & SONS, Inc.

London: CHAPMAN & HALL, Limited

1916

TP 492.5 .K44

COPYRIGHT, 1916,
BY
FREDERICK G. KEYES
AND
ROBERT B. BROWNLEE

Standope Press
F. H. GILSON COMPANY
BOSTON, U.S. A.

Endineering

PREFACE

These tables of the properties of saturated and superheated ammonia are based for the most part on an experimental investigation carried out during the course of several years in the Research Laboratory of Physical Chemistry of the Massachusetts Institute of Technology. This investigation was suggested by Professor Edward F. Miller of the Institute's Mechanical Engineering Department, which generously supplied many of the facilities needed in prosecuting the experimental investigation.

The original intention was to determine the vapor-pressure curve and the specific heat-capacity of liquid ammonia with the view of utilizing the results obtained as a partial basis for the computation of a new table of the thermodynamic properties of ammonia which would prove useful in controlling the performance of refrigerating machines. After the completion of the preliminary work, in connection with which the already existing data had been critically examined, it appeared desirable to carry out a more comprehensive experimental investigation. Throughout the whole work we have been indebted to Professor Miller for his advice and support.

The experimental work was carried out by Henry A. Babcock, Harvey S. Benson and Robert B. Brownlee, senior and graduate students in the Mechanical Engineering Department, under the direction of Frederick G. Keyes, a member of the Research Laboratory staff. Mr. Babcock took up the portion of the work bearing on the heat-capacity of liquid ammonia. Messrs. Benson and Brownlee began the determination of the vapor-pressures, the liquid specific volumes, and the isotherms of the substance and continued this work during the following year. Mr. Brownlee collaborated with Mr. Keyes in working over all the data and in constructing the necessary diagrams for the tables.

The computation of the tables was carried out by George W. Clark, Instructor in the Mechanical Engineering Department of the Institute. Mr. Clark's task was especially difficult because of the form of the equation of state employed; and it was carried out by him with great skill and intelligence. This part of the work was aided financially by a generous grant from the Rumford Fund of the American Academy. The computed values have been thoroughly and independently checked by F. G. Keyes.

The experimental methods employed and the details of the data obtained will, it is hoped, soon be ready for publication. It was decided, however, to print the tables in advance of the publication of the experi-

mental research on account of the technical need of more accurate tables than have been hitherto accessible.

The treatment of the experimental results obtained and the critical study of other observers' data have resulted in some new methods of examining experimental data which are here presented in considerable detail, for it is hoped that they will be of service to others interested in similar studies. The form of the equation of state employed is very different from those which have hitherto been employed in computing tables. The usual equations employed give the volume explicitly, while the equation used in computing the present tables possesses five values of the volume. The multiple value of the volume is an obvious physical necessity from the point of view of the continuity of the phases; and a careful study of the application of the equation, not only to the vapor phase of ammonia but also to the existing data for several other substances, has shown its use to be justified. The use of the equation for practical purposes has moreover led to the development of special methods of application which greatly lighten the labor involved in computing.

The tables have been brought into the usual forms convenient for engineering practice. In addition to the tables an accurate "Mollier" diagram has been prepared which has proved to be of very material assistance for rapidly solving engineering problems.

Frederick G. Keyes. Robert B. Brownlee.

January, 1916.

CONTENTS

	PART I. DISCUSSION OF THE DATA AND COMPUTATIONS	
		PAGE
I.	FUNDAMENTAL THERMODYNAMIC RELATIONS	3
2.	FUNCTIONAL EXPRESSIONS FOR THE CHANGE OF VAPOR-PRESSURE WITH TEMPERATURE	8
3.	THE VAPOR-PRESSURE DATA FOR AMMONIA	10
4.	THE SPECIFIC VOLUME OF LIQUID AMMONIA.	14
5.	EQUATIONS OF STATE IN GENERAL	16
6.	THE EQUATION OF STATE FOR AMMONIA VAPOR	20
7.	THE HEAT OF VAPORIZATION OF LIQUID AMMONIA	23
8.	THE SPECIFIC HEAT-CAPACITY OF AMMONIA VAPOR	26
9.	THE ENTROPY OF AMMONIA VAPOR	27
ıo.	THE SPECIFIC HEAT-CAPACITY OF LIQUID AMMONIA	29
	PART II. TABLES OF THE THERMODYNAMIC CONSTANTS OF AMMONIA	
DE	SCRIPTION OF THE TABLES	34
ΓΑΙ	BLE I. SATURATED AMMONIA. TEMPERATURE TABLE	36
ΓΑΙ	BLE II. SATURATED AMMONIA. PRESSURE TABLE	44
ΓΑΙ	BLE III. SUPERHEATED AMMONIA	54

	·			
•			·	
			•	
		·		
_		·		

PART I DISCUSSION OF THE DATA AND COMPUTATIONS

LIST OF SYMBOLS USED

- dQ: Element of heat absorbed when the work dW is represented by p dv.
- dH: Element of heat absorbed when the work dW is represented by d(pv).
- dU: Increment of the internal energy.
 - 1: Subscript referring to the vapor phase.
 - 2. Subscript referring to the liquid phase.
 - s: Subscript referring to the saturation state.
 - p: Pressure (or force per unit area).
 - v: Volume of a unit of weight.
 - T: Temperature reckoned on the absolute scale or on the (substantially equivalent) hydrogen scale.
 - C: Specific heat where the heat element dQ is considered.
 - γ : Specific heat where the heat element dH is considered.
- Φ : Entropy defined as $\int \frac{dQ}{T}$.
- L: Heat of evaporation of unit-weight of a substance.
- R: Absolute gas constant defined by pv = RT.
- 8: Correction term of the volume in the equation of state.
- a and l: Constants of the cohesive pressure term $\frac{a}{(v-l)^2}$ in the equation of state.

One 15° calorie = 4.182 joules.*

One 15° B.t.u. = 777.17 standard ft. lb.

Absolute temperature of the ice-point: 273.1° C. or 459.58° F.

* This value is very nearly identical with the mean value, 4.1826 joules, obtained from a recomputation of Barnes work by A. W. Smith (Phys. Rev., 1911).

The Thermodynamic Properties of Ammonia

1. FUNDAMENTAL THERMODYNAMIC RELATIONS

THE First Law of Thermodynamics requires that the heat absorbed dQ from the surroundings by a system which undergoes any change in state be equal to the increase dU in its internal energy plus the work dW produced in the surroundings. Since the work commonly consists in a change in volume dv against a pressure p, this relation is commonly expressed by the equation *

$$dQ = dU + p dv. (1)\dagger$$

The quantity dQ, although of infinitesimal magnitude, is not a differential of any finite quantity which, like the internal energy U, is fully determined by the state of the system. It is therefore convenient for many purposes to consider another energy quantity dH which is defined by the equation

$$dH = dU + d(pv) (2)$$

and which therefore is related to dQ in the way expressed by the equation

$$dH = dQ + v dp.$$

The quantity dH is evidently a complete differential, — one whose value is fully determined by the change in state of the system (since the values of dU and d(pv) are so determined).

Various useful relations may be deduced from these equations by expressing the state of the substance (constituting the system) in terms of the variables p, v, and T. We shall consider in connection with equation (1) first the case where the independent variables are p and T and then the case where they are v and T.

Differentiating equation (I) with respect to T we get

$$\left(\frac{\partial Q}{\partial T}\right)_{p} = C_{p} = \left(\frac{\partial U}{\partial T}\right)_{p} + p\left(\frac{\partial v}{\partial T}\right)_{p}. \tag{3}$$

 ullet It is customary in writing thermodynamic equations to sometimes insert a factor J or its reciprocal, depending on the units employed. In the equations here presented this factor has not been inserted. The simplification may be obtained by suitably choosing the units.

† In representing this heat-quantity Clausius wrote dQ to indicate that the quantity of heat was infinitesimal. However, dQ is not the differential of a known finite quantity Q, and some writers make use of other notations to avoid a misunderstanding of the quantity. The element dH, on the other hand, is evidently a perfect differential.

But

$$dU = \left(\frac{\partial U}{\partial T}\right)_{p} dT + \left(\frac{\partial U}{\partial p}\right)_{T} dp.$$

and it may be easily shown * that $\left(\frac{\partial U}{\partial p}\right)_T = -T\left(\frac{\partial v}{\partial T}\right)_p - p\left(\frac{\partial v}{\partial p}\right)_T$, and since $dv = \left(\frac{\partial v}{\partial T}\right)_p dT + \left(\frac{\partial v}{\partial p}\right)_T dp$, (1) may be written

$$dQ = C_p dT - T \left(\frac{\partial v}{\partial T}\right)_p dp. \tag{4}$$

From (4) may be written the specific heats along the saturation line of either the liquid or vapor,† or

$$C_{\bullet} = C_{p} - T \left(\frac{\partial v}{\partial T} \right)_{p} \frac{dp}{dT} = C_{p} - \left(\frac{\partial v}{\partial T} \right)_{p} \cdot \frac{L}{v_{1} - v_{2}}$$
 (5)

since $T\frac{dp}{dT}(v_1 - v_2) = L$. Thus the difference in the specific heats along the saturation lines of liquid and vapor may be written

$$C_{\mathbf{e_1}} - C_{\mathbf{e_1}} = C_{\mathbf{p_1}} - C_{\mathbf{p_2}} - \frac{L}{v_1 - v_2} \left[\left(\frac{\partial v_1}{\partial T} \right)_{\mathbf{p_2}} - \left(\frac{\partial v_2}{\partial T} \right)_{\mathbf{p_2}} \right]$$
 (6)

The specific heat of a liquid as measured is usually that defined by (5), while it is impossible to measure C_{\bullet_1} directly. By means of the equation

$$C_{p_1} - C_{p_2} = \frac{dL}{dT} - \frac{L}{T} + T \frac{dp}{dT} \left[\left(\frac{\partial v_1}{\partial T} \right)_p - \left(\frac{\partial v_2}{\partial T} \right) \right]$$

one obtains easily from (6) $C_{e_1} - C_{e_2} = \frac{dL}{dT} - \frac{L}{T}$

It is evident that since $\frac{dL}{dT}$ is negative, C_{\bullet_1} may be negative or positive. If C_{\bullet_1} is negative the vapor would superheat on compression.

From (4) the expression for the entropy becomes

$$\Phi = \int \frac{dQ}{T} = \int \frac{C_p dT}{T} - \int \left(\frac{\partial v}{\partial T}\right)_{-} dp + \Phi_0, \tag{7}$$

and accordingly it follows on differentiating that

$$\begin{pmatrix} \frac{\partial \Phi}{\partial T} \rangle_{p} = \frac{Cp}{T}, \\
\left(\frac{\partial \Phi}{\partial p} \right)_{T} = -\left(\frac{\partial v}{\partial T} \right)_{p}.$$
(8)

The first of these equations differentiating with respect to p and the second with respect to T may be equated, giving the equation

$$\left(\frac{\partial C_p}{\partial p}\right)_T = -T\left(\frac{\partial^2 v}{\partial T^2}\right)_p.$$

^{*} Max Planck, "Thermodynamik," 3rd ed., page 128.

[†] The subscript 1 will refer to the vapor phase and 2 to the liquid phase.

The first of equations (8) is a necessary condition of consistency which applies to tables of thermodynamic properties. For example, the differences in the total heats at constant pressure are the values of the mean specific heat between the two temperatures at which the difference is taken. This quantity divided by the average absolute temperature should be equal to the difference in the entropies for the corresponding temperatures.

The choice of v and T as independent variables leads to a general expression for dQ. For this purpose the definition $\left(\frac{\partial U}{\partial T}\right)_v = C_v$ and the equation $\left(\frac{\partial U}{\partial v}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_v - p$ are needed. Proceeding in the same manner as with equation (4) there is obtained

$$dQ = C_* dT + T \left(\frac{\partial p}{\partial T}\right)_* dv. \tag{9}$$

From this equation it follows at once that the specific heats along the saturation line may be written

$$C_{\bullet} = C_{v} + T \left(\frac{\partial p}{\partial T} \right)_{\bullet} \frac{dv}{dT}, \tag{10}$$

and the difference of the specific heats becomes

$$C_{s_1} - C_{s_2} = C_{s_1} - C_{s_2} + T \left[\left(\frac{\partial p}{\partial T} \right)_{v_1} \cdot \frac{dv_1}{dT} - \left(\frac{\partial p}{\partial T} \right)_{v_2} \cdot \frac{dv_2}{dT} \right]$$
(11)

If C_* is replaced by C_p one obtains the familiar relation

$$C_{p} = C_{v} + T \left(\frac{\partial p}{\partial T} \right)_{v} \cdot \left(\frac{\partial v}{\partial T} \right)_{p}, \tag{12}$$

and the difference between C_{\bullet} and C_{\bullet} is evidently

$$C_{\bullet} - C_{p} = T \left(\frac{\partial p}{\partial T} \right)_{v} \left[\frac{dv}{dT} - \left(\frac{\partial v}{\partial T} \right)_{p} \right]. \tag{13}$$

The equation for the entropy and its derivatives becomes

$$\Phi = \int \frac{C_{v} dT}{T} + \int \left(\frac{\partial p}{\partial T}\right)_{v} dv + \Phi_{0}, \tag{14}$$

$$\begin{pmatrix} \frac{\partial \Phi}{\partial T} \rangle_{v} = \frac{C_{v}}{T}, \\
\left(\frac{\partial \Phi}{\partial v} \right)_{T} = \left(\frac{\partial p}{\partial T} \right)_{v}.$$
(15)

Applying to (15) a process similar to that employed with equations (8) leads to the equation

$$\left(\frac{\partial C_{\bullet}}{\partial v}\right)_{T} = T\left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{\bullet}.$$

Returning to equation (2) it follows as with (4) that

$$dH = C_{p}dT - \left[T\left(\frac{\partial v}{\partial T}\right)_{p} - v\right]dp \tag{16}$$

and

$$dH = \left[C_v + v\left(\frac{\partial p}{\partial T}\right)_{\bullet}\right] dT + \left[T\left(\frac{\partial p}{\partial T}\right)_{\bullet} + v\left(\frac{\partial p}{\partial v}\right)_{T}\right] dv. \tag{17}$$

For the specific heats at constant pressure and constant volume the two equations lead to the equations

$$\begin{pmatrix} \frac{\partial H}{\partial T} \rangle_{p} = C_{p}, \\
\left(\frac{\partial H}{\partial T} \rangle_{v} = C_{v} + v \left(\frac{\partial p}{\partial T} \right)_{v}.
\end{pmatrix} (18)$$

The specific heats at constant pressure are seen to be equivalent while the specific heat at constant volume is greater than the specific heat defined from equation (1). The specific heat along the saturation line becomes

$$\gamma_{\bullet} = \frac{dH}{dT} = C_{p} - \left[T \left(\frac{\partial v}{\partial T} \right) - v \right] \frac{d\vec{p}}{dT}$$

$$= \left[C_{v} + v \left(\frac{\partial p}{\partial T} \right)_{v} \right] + \left[T \left(\frac{\partial p}{\partial T} \right)_{v} + v \left(\frac{\partial p}{\partial v} \right)_{T} \right] \frac{dv}{dT}.$$

$$(19)$$

If the relation pv = RT is applied to (16) and (17) there results for the former $dH = C_p dT$ while (17) becomes $dH = (C_v + R) dT = C_{p_0} dT$. The difference in the saturation specific heats is

$$\gamma_{s_1} - \gamma_{s_2} = C_{p_1} - C_{p_2} - T \frac{dp}{dT} \left[\left(\frac{\partial v_1}{\partial T} \right)_p - \left(\frac{\partial v_2}{\partial T} \right)_p \right] + \frac{L}{T}. \tag{20}$$

Taking account of the equation for $C_{p_1} - C_{p_2}$ in equation (5) and L one obtains the relation

$$\gamma_{\bullet_1} - \gamma_{\bullet_1} = \frac{dL}{dT}.$$
 (21)

The equation $C_{s_1} - C_{s_2} = \frac{dL}{dT} - \frac{L}{T}$ provides a further relation which assists in comprehending the difference between the definition of heat contained in equations (1) and (2). Writing ΔC_{s_2} for this equation and $\Delta \gamma_{s_{2}}$ for (21) it follows that

$$L = T \left(\Delta \gamma_{s_{12}} - \Delta C_{s_{12}} \right). \tag{22}$$

The equations for the Joule-Thomson experiment are at once deducible from equations (16) and (17); assuming that H is constant one obtains:

$$\frac{dT}{dp} = \frac{T\left(\frac{\partial v}{\partial T}\right)_p - v}{C_p}.$$
 (23)

$$\frac{dT}{dv} = \frac{T\left(\frac{\partial p}{\partial T}\right)_{v} + v\left(\frac{\partial p}{\partial v}\right)_{T}}{C_{v} + v\left(\frac{\partial p}{\partial T}\right)_{T}}.$$
(24)

The above relations serve as a general basis for using the quantity defined by either (1) or (2). The present tables are based on equation (1), which represents the heat added to a fluid within an envelope, while (2) evidently represents the quantity of heat supplied when a fluid is forced to flow from one p, v, T condition to another p, v, T condition.

General Formulæ Deducible from Equation (1)

Independent Variables p, T. Independent Variables v. T. $dQ = C_{p} dT - T \left(\frac{\partial v}{\partial T} \right) dp.$ $dQ = C_{\bullet}dT + T\left(\frac{\partial p}{\partial T}\right) dv.$ $C_{\bullet} = C_{\bullet} + T \left(\frac{\partial p}{\partial T} \right) \frac{dv}{dT}.$ $C_{\bullet} = C_{p} - T \left(\frac{\partial v}{\partial T} \right)_{a} \frac{dp}{dT}.$ $\left(\frac{\partial U}{\partial p}\right)_{m} = -T\left(\frac{\partial v}{\partial T}\right) - p\left(\frac{\partial v}{\partial p}\right)_{m} \cdot \left(\frac{\partial U}{\partial v}\right)_{m} = T\left(\frac{\partial p}{\partial T}\right) - p.$ $\Phi = \int \frac{C_{p} dT}{T} - \int \left(\frac{\partial v}{\partial T}\right)_{n} dp + \Phi_{0}. \qquad \Phi = \int \frac{C_{v} dT}{T} + \int \left(\frac{\partial p}{\partial T}\right)_{n} dv + \Phi_{0}.$ $\left(\frac{\partial \Phi}{\partial T}\right) = \frac{C_{\bullet}}{T}.$ $\left(\frac{\partial \Phi}{\partial T}\right)_{x} = \frac{C_{p}}{T}.$ $\left(\frac{\partial \Phi}{\partial v}\right)_{m} = \left(\frac{\partial \dot{p}}{\partial T}\right).$ $\left(\frac{\partial \Phi}{\partial D}\right)_{T} - \left(\frac{\partial v}{\partial T}\right)_{T}$ $\left(\frac{\partial C_p}{\partial D}\right)_{T} = -T\left(\frac{\partial^2 v}{\partial T^2}\right).$ $\left(\frac{\partial C_v}{\partial v}\right)_{r} = T\left(\frac{\partial^2 p}{\partial T^2}\right)_{r}$ For Q Constant $\left(\frac{dT}{dr}\right) = -\frac{T\left(\frac{\partial p}{\partial T}\right)_{\bullet}}{C}.$ $\left(\frac{dT}{dp}\right) = \frac{T\left(\frac{\partial v}{\partial T}\right)_p}{C}$ $\left(\frac{\partial v}{\partial T}\right)_{\sigma} \cdot \left(\frac{\partial p}{\partial v}\right)_{\sigma} \cdot \left(\frac{\partial T}{\partial p}\right)_{\sigma} = -1.$ $C_{p} - C_{v} = T \left(\frac{\partial p}{\partial T} \right)_{r} \cdot \left(\frac{\partial v}{\partial T} \right)_{r} = -T \left(\frac{\partial p}{\partial v} \right)_{T} \cdot \left(\frac{\partial v}{\partial T} \right)_{p}^{2}$ $C_{p_1} - C_{p_2} = \frac{dL}{dT} - \frac{L}{T} + \frac{L}{v_1 - v_2} \left[\left(\frac{\partial v_1}{\partial T} \right)_p - \left(\frac{\partial v_2}{\partial T} \right)_p \right].$ $C_{\bullet_1} - C_{\bullet_1} = \frac{dL}{dT} - \frac{L}{T}.$

General Formulæ Deducible from Equation (2)

Independent Variables
$$p$$
, T .

$$dH = C_p dT - \left[T\left(\frac{\partial v}{\partial T}\right)_p - v\right] dp. \qquad \left[C_v + v\left(\frac{\partial p}{\partial T}\right)_v\right] dT + \left[T\left(\frac{\partial p}{\partial T}\right)_v + v\left(\frac{\partial p}{\partial v}\right)_T\right] dv.$$

$$\gamma_s = C_p - \left[T\left(\frac{\partial v}{\partial T}\right)_p - v\right] \frac{dp}{dT}. \qquad \left[C_v + v\left(\frac{\partial p}{\partial T}\right)_v\right] + \left[T\left(\frac{\partial p}{\partial T}\right)_v + v\left(\frac{\partial p}{\partial v}\right)_T\right] \frac{dv}{dT}.$$

$$\left(\frac{\partial H}{\partial T}\right)_p = \left(\frac{\partial Q}{\partial T}\right)_p = C_p. \qquad \left(\frac{\partial H}{\partial T}\right)_v = C_v + v\left(\frac{\partial p}{\partial T}\right)_v *$$

$$\frac{1}{T}\left(\frac{\partial H}{\partial T}\right)_p = \left(\frac{\partial \Phi}{\partial T}\right) = \frac{C_p}{T}. \qquad \frac{1}{T}\left(\frac{\partial H}{\partial T}\right)_v = \left(\frac{\partial \Phi}{\partial T}\right)_v + \frac{v}{T}\left(\frac{\partial p}{\partial T}\right)_v.$$

$$\left(\frac{\partial T}{\partial p}\right)_H = \frac{T\left(\frac{\partial v}{\partial T}\right)_p - v}{C_p} = \mu. \qquad \left(\frac{\partial T}{\partial v}\right)_H = -\frac{T\left(\frac{\partial p}{\partial T}\right)_v + v\left(\frac{\partial p}{\partial v}\right)_T}{C_v + v\left(\frac{\partial p}{\partial T}\right)_v}.$$

$$\left(\frac{\partial H}{\partial p}\right)_T = -\left[T\left(\frac{\partial v}{\partial T}\right)_p - v\right] = -C_p\mu. \quad \left(\frac{\partial H}{\partial v}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_v + v\left(\frac{\partial p}{\partial v}\right)_T.$$

$$\gamma_{s_1} - \gamma_{s_2} = \frac{dL}{dT}.$$

$$H_1 - H_2 = U_1 - U_2 + p_1v_1 - p_2v_2.$$

2. FUNCTIONAL EXPRESSIONS FOR THE CHANGE OF VAPOR-PRESSURE WITH THE TEMPERATURE

A knowledge of the relation between the pressure and the temperature along the saturation line is of first importance in constructing a table of thermodynamic quantities. From this relation may be obtained: (1) the specific volumes of the saturated vapor through the equation of state of the vapor phase; (2) values of $\frac{dp}{dT}$ for use in calculating the heat of evaporation by the Clapeyron Equation. The problem of obtaining accurate values of $\frac{dp}{dT}$ depends evidently upon the accuracy with which it is possible to relate p to T by means of a suitable equation. Considerable attention has in the past been devoted to this subject, but most of the methods of

* Since
$$\left(\frac{\partial p}{\partial T}\right) = \frac{p}{T} = \frac{R}{v}$$
 from $pv = RT$ it follows that for a perfect gas
$$\left(\frac{\partial H}{\partial T}\right)_{v} = T\left(\frac{\partial \Phi}{\partial T}\right)_{v} + R = C_{v} + R = C_{p_{0}},$$

where C_{p_0} refers to the specific heat at constant pressure as the pressure approaches zero. It may be further observed that on applying the same pressure volume relation to $\left[T\left(\frac{\partial v}{\partial T}\right)_p - v\right]$ the specific heat γ_s becomes equivalent to C_p . C_{s_1} on the other hand reduces to $C_{s_1} = C_{p_1} - R \frac{d \log p}{d \log T}$.

attacking the problem have their starting point in certain integrations of the Clapeyron equation $L = T \frac{dp}{dT} (v_1 - v_2)$, which may also be written:

 $dp = \frac{L}{T(v_1 - v_2)} dT$. It is easily seen, for example, that the latter equation, L being represented by $L_0 + a_1T + a_2T^2 + \cdots + a_nT^n$, v_1 by $\frac{RT}{p}$, and neglecting v_2 , leads to the expression

$$\log p = \int \frac{L_0 + a_1 T + a_2 T^2 + \cdots + a_n T^n}{R T^2} dT + m \dots$$

$$= -\frac{L_0'}{T} + a_1 \log T + a_2' T + \cdots + a_n' T^{n-1} + m, \qquad (25)$$

where $L_0' = \frac{L_0}{R}$ and a_1' , a_2' have an obvious significance, m being a constant of integration calculable from a single value of p at a definite temperature.

In practice the constants of formula (25) are evaluated from several smoothed data suitably spaced with reference to the temperature. Consideration reveals at once, however, that a method of evaluating the constants is to be preferred whereby the inevitable inconsistencies of the experimental data will be disclosed and eliminated. The following method of procedure was accepted in the case of ammonia as a means of accomplishing this object.

Van der Waals inferred from certain considerations relative to his equation of state that

$$\log \frac{p_c}{p} = a \left(\frac{T_c}{T} - 1 \right) \tag{26}$$

should be valid where a is a constant. It is well known, however, that a is not constant, but varies with T.* If, however, it is possible to represent a accurately as a function of T the correct relation between p and T will result. Writing (26) as $T\left(\frac{\log p_c/p}{T_c-T}\right)=a$ it is possible to calculate values of a throughout the extent of the vapor-pressure data available. For a number of substances a lies on a curve resembling a parabola.

It is a matter of experience that it is impossible to draw a representative curve through experimental data where a minimum occurs, but to avoid this difficulty it is only necessary to plot the a's with $(T_c - T)$ as an ordinate and by extrapolation obtain the value of a indefinitely near the critical temperature. This section of the curve is fortunately very nearly linear. Assuming that a may be represented as

$$a_0 + a_1 (T_c - T) + a_2 (T_c - T)^2 + \cdots + a_n (T_c - T)^n$$

See H. Happel, Ann. d. Physik, 13, 340 (1904); also Marks, Jour. Am. Soc. Mech. Eng., 33, 563 (1911).

 a_0 would be the value of a indefinitely near the critical temperature. now the variable is changed to

$$Z = \frac{a - a_0}{T_c - T} = a_1 + \cdots + a_n (T_c - T)^{n-1},$$

the difficulty of being obliged to draw a smooth curve through a minimum will be avoided.*

Rewriting (26), taking account of the Z function, there results

$$\log p = -\frac{Z(T_c - T)^2 + a_0 T_c}{T} + (\log p_c + a_0);$$

$$a_0 T_c = \omega \quad \text{and} \quad (\log p_c + a_0) = m,$$

$$\log p = -\frac{Z(T_c - T)^2 + \omega}{T} + m.$$
(27)

writing

This equation in practice is most convenient for calculations since $Z(T_c-T)^2$ may be obtained with sufficient accuracy with a 20-inch slide rule; there remaining only the division of $\omega + Z (T_c - T)^2$ by T to be carried out by logarithms. If desired, the critical constants may be absorbed in the constants of the equation

$$\log p = -\frac{b}{T} + C + dT + eT^2 + \cdot \cdot \cdot \cdot \tag{28}$$

3. THE VAPOR-PRESSURE DATA FOR AMMONIA

The most reliable and systematic data in connection with the vaporpressure of ammonia are due to Regnault.† Other measurements have been made at isolated sections of the vapor-pressure temperature curve by Faraday, Blumcke, Brill, and Davies. The data due to all these observers have been admirably treated by Goodenough and Mosher** and also recently by Holst.†† In the Holst treatment of the data a few new measurements carried out by Holst were included. These additions consist of three measurements between -32° and -44° C. and also one each at 19.58° and 45.05° C. The Holst treatment, however, does not lead to values which differ materially from the Mosher values although Holst perceived that the Regnault pressures above zero were too low.

The vapor-pressure values used in the present tables depend entirely on the data obtained at the Research Laboratory of Physical Chemistry of the Massachusetts Institute of Technology. Measurements of pressure were made by equilibrating the pressure exerted by the ammonia

[•] Sometimes, owing to inaccurate data, the value of a_0 at the critical temperature is difficult to determine. For several substances, however, it has been found that no appreciable error is made by assuming 3.00 as the value of a_0 .

[†] Mem. de l'Inst. de France, 26, 598 (1847).

[¶] Proc. Roy. Soc., 78-A, 41 (1906).

[†] Phil. Trans., 135, 170 (1845).

^{||} Ann. der Physik, 21, 170 (1906).

[§] Wiedemann's Annalen, 34, 10 (1888).

^{**} Univ. of Illinois Bull., 18 (1913).

th Les prop. therm. de l'ammoniaque et du chlorure d'inelhyte, leiden (1914).

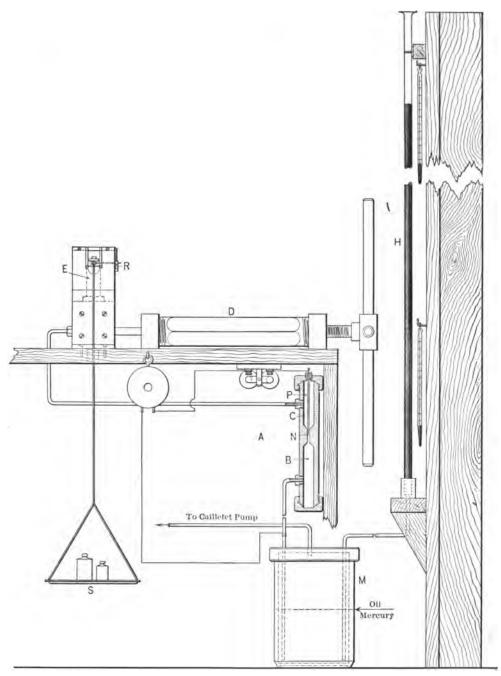
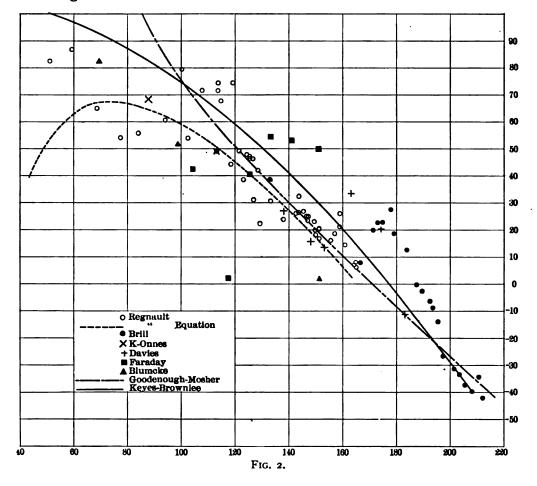


Fig. 1.

against a piston by means of weights, and the final temperature measurements were made with a platinum resistance thermometer. The calibration of the pressure piston was accomplished by direct comparison with a column of mercury 12.8 meters in length. The device used for determining the equilibrium of the piston is illustrated in Fig. 1.


12

The mercury-in-glass column is indicated at H and communicates with the mercury in the steel cylinder at M. Leading from the cover of the steel cylinder are two steel tubes, one of which passes to the Cailletet pump which serves to elevate the mercury in the column M, while the other leads from the mercury to the steel device Λ . From Λ the oil tube connects with the pressure-measuring piston E, which has attached a motor-driven device at R for reciprocating the piston through an angle regularly. The adjusting of the oil on the piston side of Λ is accomplished by the screw-pump D. The temperature of the mercury column was read by means of thermometers placed at intervals along the column. The average temperature was then obtained by graphically determining the area on a rectangular diagram between the curve drawn through the temperature readings and the axis of column length. Division of the area by the column length thus gives the true average temperature.

It has always been customary to consider the piston in equilibrium when the piston appeared to neither rise nor fall. Since the correct calibration of the piston was a matter of primary importance considerable study was devoted to the problem of investigating the sources of error that attend detecting the true equilibrium of the piston. finally adopted consisted in observing the motion of the mercury at its junction with the oil at N in the steel capillary A by means of a telephone receiver connected in series with the secondary of a small induction coil adjusted to the proper frequency. The connections of the circuit are evident from the drawing. An insulating joint is provided at I through which passes the pointed platinum wire (p). When the weights on the scale pan S are insufficient the mercury will rise in the capillary at N and excite the telephone receiver. If it is desired to confirm the observation the circuit is broken by the injection of a minute quantity of oil by means of the pump D. The weights are adjusted until the removal of 0.1 gram causes contact to be made and the addition of 0.1 gram permanently prevents contact. Since the diameter of the capillary was about 0.15 cm. while the diameter of the piston was about 0.476, a motion of 0.1 cm. of mercury in the capillary corresponds with only 0.01 cm. vertical motion of the measuring piston. The leak of oil at the piston, of course, would cause the mercury to make contact even if equilibrium had been attained. The diameter of the hole into which the piston was fitted, however, was only 0.01 mm. greater than the piston and observations on the rate of leak were made. The rate of leak under the calibrating pressures was 7×10^{-4} c.c. per hour per atmosphere and thus the arrangement permitted readings being taken rapidly and accurately. The average of two sets of the gauge calibrations agreed to about one part in eight thousand. The telephone device was employed in all the final vapor-pressure measurements and an improved thermostatic arrangement, containing the ammonia under measurement, permitted a given temperature to be maintained constant to within 0.005° C. for long periods of time. The real difficulty in making

accurate measurements lies, however, in securing true equilibrium between the vapor and liquid. To aid in securing equilibrium, the ammonia in the container was agitated by shaking the container during the course of the measurements.

The data of other observers in relation to the measurements carried out at the Research Laboratory of Physical Chemistry is illustrated in a Z plot, Fig. 2. It will be noted that the Z function serves well in making evident inconsistencies in the trend of the various observations.

The equations of the vapor pressure are as follows:

$$\log_{10} p = 7.91121 - \frac{1209.88 + Z(T_c - T)^2}{T}.$$
 (29)

 $Z = 10^{-4} [-11.901 + 1.0018 \cdot 10^{-2} (T_c - T) + 3.2715 \cdot 10^{-4} (T_c - T)^2],$ or eliminating the critical constant T_c ,

$$\log_{10} p = -\frac{1969.65}{T} + 16.19785 - 0.0423858 T + 5.4131 \cdot 10^{-6} T^{2} - 3.2715 \cdot 10^{-8} T^{3}.$$
(30)

The critical constants are as follows:

 $T_c = 132.9^{\circ} \text{ C.}$ $p_c = 112.31 \text{ atmos.}$ $v_c = 4.236 \text{ cc. per gram.}$

The value given of the critical volume was derived from the vapor and liquid saturation specific volumes by means of the rule of the "rectilinear diameter."* The formula for $\frac{dp}{dT}$ follows from the above vapor-pressure equation in its second form and reads:

$$\frac{dp}{dT} = p \left[\frac{4535.28}{T^2} - 0.074571 + 2.49282 \cdot 10^{-4} T - 2.25987 \cdot 10^{-7} T^2 \right] (31)$$

4. THE SPECIFIC VOLUME OF THE LIQUID AMMONIA

Before discussing the experimental data the question of the empirical equation which is to represent the specific volumes of the liquid may be considered. After modifying it somewhat the equation of Avenarius seemed to be the best suited for the purpose. The Avenarius equation reads:


$$v = a + b \log (T_c - T), \tag{32}$$

where T_c is the critical temperature. Any empirical equation must satisfy the terminal conditions of the curve at the critical temperature, and must yield a finite value for the specific volume at absolute zero, assuming that superfusing could, of course, take place to that extent. The equation does satisfy the latter condition, but gives an infinite value to the volume at the critical temperature. Granting its validity, if v is plotted with the logarithm of $(T_c - T)$ on a rectangular diagram a straight line should result. It is needless to state that such a condition could scarcely be expected to hold. Since, however, the Avenarius form of equation does rectify the v, T curve to a considerable extent, the procedure adopted for the ammonia liquid volumes was to assume the equation $v = a - \log (\alpha - T)$, where α is a function of the temperature. To use the equation it is merely necessary to determine the constant a for some accurately known specific volume far below the critical temperature, arbitrarily assuming α to have the same numerical value as the critical temperature. Values of α for all the remaining data can then be calculated and plotted with the temperature as a coördinate. The curve for ammonia resembles a parabola with a minimum at about 48 degrees. The total change in α is only a few per cent, and its representation as a function of the temperature is comparatively easy. The particular advantage of the method lies in the fact that slight inconsistencies in the experimental data become at once evident. In Fig. 3 the α values corresponding to the experimental data of Dieterici and Lange are plotted on

^{*} Compt. rend. 102, 1202 (1886); Compt. rend. 104, 1563 (1887); Phil. Mag., 50, 291 (1900).

the same scale as the Research Laboratory experimental data, the latter being represented by the curve. The dotted line represents the smoothed data as given by Mosher.

It is evident that there is lack of agreement between the Lange data and the present work. It is also evident from the figure that the specific

volume curve can be accurately obtained from about five exact measurements of the specific volume at suitably selected temperatures. This latter fact led Mr. Brownlee to measure accurately the volumes at the temperatures -33.5° , 0° , 35° , 68° , 110° , 120° , 125° , and the full line in the figure is drawn through the volumes found at these temperatures.

TABLE I. SPECIFIC VOLUME OF LIQUID AMMONIA

Temperature, ° C.	a from R. L. of P. C. Data	Dieterici	Lange	Brownlee
-50	. 133.22		1.4375	1.4227
– 30	132.61		1.4895	1.4745
— 10	132.06		1.5480	1.5332
0	131.83	1.5656	1.5795	1.5657
+20	131.42	1.6342	1.6503	1.6387
40	131.21	1.7227	1.7383	1.7256
60	131.225	1.8250	1.8487	1.8331
8o	131.40	1.9595	1.9982	1.9747
100	131.775	2.1525		2.1836
I 2O	132.49			2.5891

Table I gives a survey of the agreement between the Lange* and Dieterici values and the values based on the Research Laboratory measurements. Attention may be directed to the agreement in the value obtained by Dieterici at o° C. The deviations in the Dieterici measurements and the recent measurements lie in the direction of the difference between the hydrogen scale and the mercury scale. scales, of course, agree at the freezing point and the boiling point of water. Without knowing the kind of glass from which the mercury thermometer was constructed it would be difficult to correct the Dieterici data. maximum difference between the two thermometer scales occurs at about 40° C. and would likely not exceed 0.12° C.† A greater error than the thermometric error, however, would result from the temperature expansion of the glass container used and its dilation due to pressure. The latter cannot be calculated but must be determined experimentally, and even then the glass used must be carefully annealed after having been The temperature expansion of German soda glass is about 3.0×10^{-6} , which gives 0.0021 as the correction due to temperature expansion. The thermometric error amounts to 0.0006 c.c., thus giving a total of 0.0027 c.c. as the amount by which the Dieterici value is too Dieterici‡ gives 1.7227 as the result of smoothing his experimental The value arrived at in the recent work is 1.7255 c.c. Correcting the Dieterici value leads to the value 1.7254 c.c. The attempt to correct the Dieterici work at higher temperatures is difficult owing to the unknown stretch of the glass due to the increasing pressure. It will be noticed from the α figure that the Dieterici experimental values become increasingly small as the temperature increases, which would be predicted in fact owing to the pressure and temperature dilation effect.

5. EQUATIONS OF STATE IN GENERAL

The state of any substance in either of its three phases may be represented as some function of the variables p, v, and T, but for practical requirements in connection with ammonia refrigeration machines it is the vapor phase which is required to be accurately represented by such a function. The number of formulas proposed are very numerous, but

- * The volumes inserted in the table were calculated from Fig. 3 by drawing a representative line through the Lange values.
 - † See Guillaume: "Traité Pratique de la thermométrie de précision."
 - ‡ Winkelmann, Handbuch der Physik, 3, 965.
- § Starting with the general equation of the Joule-Thomson experiment (23) the Callendar equation may be derived by assuming μ to depend on the temperature; as $\frac{\alpha}{T^n}$, and independent of the pressure. For example:

$$\frac{T\left(\frac{\partial v}{\partial T}\right)_{p}-v}{C_{p}}=\frac{dT}{dp}=\mu=\frac{\alpha}{T^{n}}.$$

If C_p be assumed constant the equation may be written $\frac{T dv - v dT}{T^2} = C_p \frac{\alpha}{T^{n+2}}$. Integrating

equations of the general form suggested by Callendar* seem to have received the preference. It seems not unlikely that this preference may be attributed to the fact that formulæ of the Callendar type give the volume explicitly, and such an equation is most convenient in preparing tables of "properties" since volumes at constant pressure are desired. The matter of primary importance would appear, however, to concern the general consistency of the deductions and inferences which follow from the proposed equation rather than the saving of labor to the calculator in preparing tables of "properties."

The history of the subject of equations of state may be considered as included in the much broader attempt to increase our understanding concerning the continuity of matter from the point of view of an explanation of the phenomena in terms of the motion of the discreet particles of which the substances are assumed to be composed. Van der Waals,† considerations led him to a rational equation which represented the continuity of the vapor and liquid phases in its general aspects. equation of van der Waals, however, while leading to many generalizations fails to represent accurately the p, v, T relations, even in the vapor phase, with sufficient accuracy. Many of the numerous formulæ, for the most part wholly empirical, which have appeared since van der Waals' work was published, may accordingly be regarded as an attempt to provide an equation which would represent with sufficient accuracy the p, v, T relations of substances required in technical work. The vapor phase of water for example has received much attention on account of its technical importance, and an empirical equation due to Knoblauch, Linde, and Klebe I has been accepted as representing the vapor phase accurately within the range required in engineering practice. The equation reads:

$$v = \frac{BT}{p} - (\mathbf{I} + ap) \left[C \left(\frac{373}{T} \right)^3 - D \right]$$

this equation there results

$$\frac{v}{T} = f(p) - \frac{C_p}{n+1} \frac{\alpha}{T^{n+1}}.$$

When the temperature is high and the volume large pv = RT may be assumed to represent the behavior of the gas. This identifies f(p) with $\frac{R}{p}$.

The complete Callendar equation may then be written

$$v = \frac{RT}{p} - C_p \frac{\alpha}{n+1} \frac{1}{T^n}.$$

* Proc. Roy. Soc., 67, 266 (1900).

† J. D. van der Waals, Kontinuität, 1872. See also the Van't Hoff lectures.

Note. — The van der Waals equation reads

$$p = \frac{RT}{v - b} - \frac{a}{v^2}$$
, where a and b are constants.

[†] Verein deutscher Ingenieure, Heft. 21 (1905). Berlin. Also see Winkelmann, Handbuch der Physik, Vol. III, 1121.

This equation represents the somewhat restricted range of the measurements made by Knoblauch, Linde, and Klebe, but begins to fail as small volumes are approached.* If $\frac{\partial^2 p}{\partial T^2}$ is formed from the equation above it turns out to be a function of p and T. Examination of the Linde data just mentioned shows on the other hand that the pressure is a linear function of the temperature which would make $\frac{\partial p^2}{\partial T^2}$ equal to zero. The consequence of $\frac{\partial^2 p}{\partial T^2}$ being equal to zero or a function of the temperature is of considerable significance because of its relation to the general equation:

$$\left(\frac{\partial C_{v}}{\partial v}\right)_{T} = T\left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{v}.$$

If $\left(\frac{\partial^2 p}{\partial T^2}\right)_{\mathbf{r}}$ is a function of the volume, $[C_{\mathbf{r}}]_T$ must be a function of the volume; but if the second derivative of the pressure is zero, $C_{\mathbf{r}}$ is a function of the temperature solely. Unfortunately it is not easy to measure $C_{\mathbf{r}}\dagger$ and therefore $C_{\mathbf{p}}$ is measured. The general relation $C_{\mathbf{r}} = C_{\mathbf{p}} - T\left(\frac{\partial p}{\partial T}\right)_{\mathbf{r}} \cdot \left(\frac{\partial v}{\partial T}\right)_{\mathbf{p}}$ permits on the other hand the computation of $C_{\mathbf{r}}$ only when $T\left(\frac{\partial p}{\partial T}\right)_{\mathbf{r}} \cdot \left(\frac{\partial v}{\partial T}\right)_{\mathbf{p}}$ is accurately known. The strongest proof of the independence of $C_{\mathbf{r}}$ from the volume is therefore at present furnished by the linear increase of the pressure when the vapor is heated at constant volume.

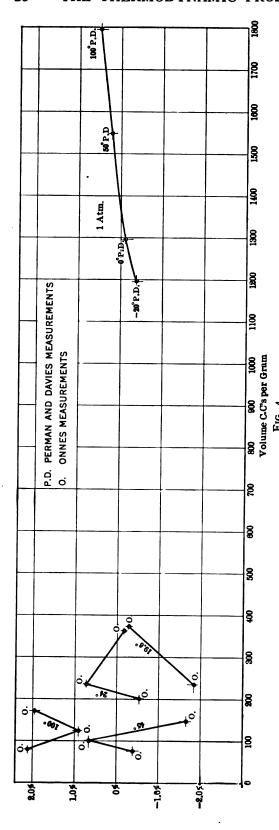
* Mr. R. D. Mailey, at the Research Laboratory, has made a very careful study of the properties of water, liquid, and vapor phase, and over a range of temperature exceeding the critical temperature and to pressures above 500 atmospheres. One of the writers has had the privilege of examining the data in the vapor phase and finds the equation used in these tables to apply. This would indicate that equations of the type of the Linde Equation are defective in form.

† J. Joly. Proc. Roy. Soc., 41, 352 (1886), (1887); Chem. News, 58, 271 (1888); Proc. Roy. Soc., 45, 218 (1890); Phil. Trans., 182a, 73 (1892), 185a, 943 (1894); Proc. Roy. Soc., 55, 390 (1894).

Joly employing his steam calorimeter measured the specific heat at constant volume of air, carbon dioxide, and hydrogen. The measurements of the latter substance were not carried to completion. A. Winkelmann (Winkelmann, Handbuch der Physik, Vol. III, 228) discusses the air data and points out that Joly's values are too large from a comparison of the ratio C_p/C_v . This latter quantity has been measured by a number of observers and the ratio is close to 1.405. The Joly values of C_v on the other hand lead to 1.390. The values obtained by Joly moreover seem to indicate that C_v is a function of the volume. Consideration shows, however, that Joly's C_v is in reality $C_v + T\left(\frac{\partial p}{\partial T}\right)_v \frac{dv}{dT} + \Delta H$, where dv is the sum of combined thermal expansion and pressure expansion of the copper sphere which was used to contain the gas under measurements. The term ΔH represents a quantity of heat absorbed by the copper sphere containing the gas, which results from the altered heat capacity of copper under tension and also the absorption of heat due to the stretching of the copper sphere when the pressure increases from the pressure at ordinary temperature to the pressure at the final temperature of the steam. The latter quantity is small, but becomes significant at the higher pressures employed by Joly. A note discussing and recalculating Joly's experiments is in course of preparation.

The Joule-Thomson measurements* have been frequently regarded as furnishing a crucial test of the correctness of form or the accuracy with which the constants may have been determined in an accepted equation of state. The Joule-Thomson numbers indeed do furnish a sound basis for testing equations of state, but the measurements are unfortunately most difficult to make and experimenters who have occupied themselves with the problem have not always arranged to carry out the measurements in such a way as to yield numbers readily interpreted in connection with the Joule-Thomson thermodynamic equation of the porous plug experiment. For example, while the equation requires the difference in temperature of the gas before and after the plug for a small difference in pressure very often what has been measured is the difference in temperature corresponding to a large difference in pressure.†

The Joule-Thomson measurements in the case of ammonia are due to Wobsa.‡ Wobsa's measurements exhibit the anomaly of making the coefficient μ diminish with increasing pressure at constant temperature which would lead to the inference that ammonia vapor compressed at constant temperature approaches more nearly the ideal gas state.§ From measurements of the boiling point of liquid ammonia supplied in wrought iron cylinders it is possible to compute the per cent of water present by means of the Van't Hoff formula. The per cent of water appears to be of the order of 0.5 to 0.7 per cent. The presence of water accordingly in the commercial ammonia employed by Wobsa may possibly account in part for the apparently anomalous trend in the measurements.¶ The Wobsa measurements have been admirably discussed by Goodenough and Mosher and nothing can be added to their treatment until further measurements have been made.


- * A lucid discussion of this quantity is given in Noyes and Sherrill's General Principles of Chemistry.
 - † W. P. Bradley and C. F. Hale, Phys. Rev., 29, 258 (1909).
 - ‡ Zeitschr. f. d. ges. Kalte Industrie, 61 (1907).
 - § An ideal gas is one following the equation pv = RT for which μ would be zero.
- ¶ In a mixture of two gases the constants of the equation (33) for any given constant composition would be a function of the constants of the components. For example, assume that (a) of the cohesive pressure term may be written, where x is the fraction of the first component:

$$a_x = a_1(x)^2 + 2 a_{12}(x) (1 - x) + a_2 (1 - x)^2$$

 a_{12} being the cohesive pressure constant for the unlike molecules. If the attraction were large between unlike molecules, as is the case for ammonia and water, a_{12} would be many times larger than either a_1 or a_2 . The equation (33) used in connection with the Joule-Thomson equation (23) gives for moderate pressures:

$$\frac{dT}{dp} = \frac{\frac{2}{R}\frac{a}{T} - \beta}{C_{p_0}}.$$

Now $\frac{2a}{RT}$ is the principal term of the numerator, and in a mixture, a and β would be replaced by a_x , β_x . From the comment above it is easily seen that a_x might be larger for a mixture than it would be for either pure substance alone since ammonia and water have considerable mutual affinity.

6. THE EQUATION OF STATE FOR AMMONIA VAPOR

The equation of state used in the computation of the present tables has already been briefly discussed in connection with a number of other substances.* The equation reads:

$$p = \frac{R}{v - \delta} T - \frac{a}{(v - l)^2}. \quad (33)$$

The constants of this equation for ammonia vapor have been derived from the measurements made at the Research Laboratory of Physical Chemistry of the Massachusetts Institute of Technology. The values of these constants are:

$$R = 4.8177;$$

 $\log_{10}\delta = 0.98130 - \frac{3.08}{v}$
 $a = 34610.1;$ and $l = -1.173.$

Small volumes and high pressures are best suited for the purpose of determining the constants since the deviations from the relation pv = RT are greatest at small volumes. present case volumes less than 15 c.c. were not used in evaluating the constants of the equation above. A number of measurements were made at large volumes, but great difficulty was experienced in obtaining accurate data owing apparently to the adsorption phenomena due to the steel walls of the container.

The comparison of the work of other observers may be most

^{*} Frederick G. Keyes, A. S. R. E. Journal, Vol. 1, 9 (1914).

easily compared with equation (33) by substituting the measured volumes and temperatures in the equation and comparing the pressures. It is perhaps better in the present instance, however, to compute the volumes for the measured pressures and temperatures. The result of such a comparison is given in Fig. 4, where the per cent volume difference is given at the calculated volumes. The Onnes* groups of data are substantially at constant temperature while the Perman and Davies measurements are at one atmosphere pressure. Holst states that the isotherm in the Onnes data at 45 degrees is in error. The magnitude or the nature of the error is not stated however. It is well known that ammonia is adsorbed on glass surfaces to a more marked extent than any other gas, consequently there exists the possibility that the somewhat erratic trend of the Onnes measurements may be due to this disturbing effect. If this were true it may be stated that as the temperature falls, increased adsorption would cause the volume to grow small too rapidly at constant pressure, while heating the glass bulb loaded at room temperature would cause ammonia to be given up and hence give too large a volume. Perman and Davies†

* H. Kamerlingh Onnes' "Report of the Third International Congress of Refrigeration," Sept. 15 to Oct. 1, 1913.

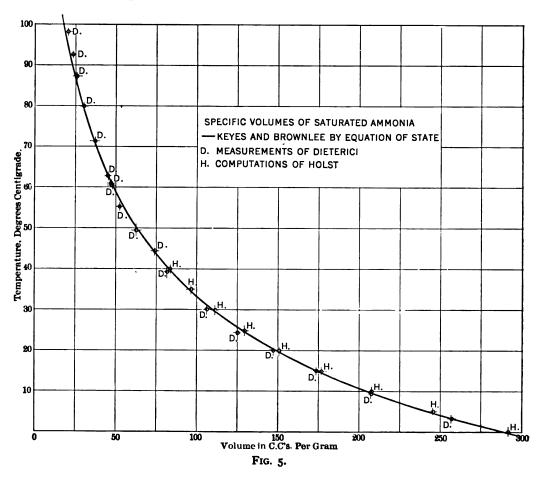
† Perman and Davies, to satisfy themselves that there was no adsorption, measured the density in two glass globes of different capacities. One bulb had a volume of about 0.5 liter, surface 3.22 dm², and the other 1.77 liters, surface 7.10 dm². The ratio of surfaces, accordingly, of the larger globe to the smaller is 2.2 times. Langmuir has measured the total quantity of water vapor evolved in a good vacuum from a glass surface, in passing to 360° C. The globe was a 40-watt tungsten lamp, which has a surface of approximately 1.61 dm², and the quantity of water vapor evolved amounted to 0.3 c.c. 0°/760 or about 2.41 × 10⁻⁴ grams. The weight of water is accordingly 1.5 × 10⁻⁴ grams per dm². If it is assumed that ammonia dissolves in the water film in the same manner as in liquid water, there would be 1.35 × 10⁻⁴ grams of ammonia adsorbed per dm². If ρ is the true density of the ammonia, ν the volume of the globe in which it is proposed to measure the density of the ammonia, ν the weight of ammonia adsorbed per square dm. of surface, and ν the surface of the globe, we may write:

Total weight of ammonia in the globe is $\rho V + \omega s = W$ or $\rho = \frac{W}{V} - \omega \frac{S}{V}$.

Let the subscript 1 denote a globe of radius r_1 , and subscript 2 denote a second sphere of larger, size and radius r_2 , then $\frac{W_1}{V_1}$, the apparent density obtained in the first bulb, is equal to $\rho + \omega \frac{S_1}{V_1}$ and, similarly, $\frac{W_2}{V_2} = \rho + \omega \frac{S_2}{V_1}$.

If Δ is the difference in the measured densities,

$$\Delta = \frac{W_1}{V_1} - \frac{W_2}{V_2} = \left(\rho + \omega \frac{S_1}{V_1}\right) - \left(\rho + \omega \frac{S_2}{V_2}\right) = \omega \left(\frac{S_1}{V_1} - \frac{S_2}{V_2}\right) = 3 \omega \left(\frac{I}{r_1} - \frac{I}{r_2}\right). \tag{a}$$


The value of the density calculated by the equation of state is 0.76994, while the density found by Perman and Davies is 0.77085, the difference being 0.00091 gram. From the equation above,

$$\omega = \left(\frac{W}{V} - \rho\right)_{S}^{V} = 0.00091 \left(\frac{V}{S}\right).$$

Now for a liter sphere r = 0.621 dm². Since $\frac{V}{S} = \frac{1}{3}r$ or 0.207, $\omega = 0.000188$ gram per dm². The number obtained above by means of the Langmuir datum is of the same order of magnitude

work was carried out with the greatest care and the average of two series of duplicate measurements at zero degrees and one atmosphere are in good agreement.

Measurements have been made by Dieterici* of the specific volumes of the vapor along the saturation curve. The measurements were made in

glass† and depend on the accuracy with which the liquid volumes are known. Holst has also computed by means of the Onnes virial equation

(0.000135). Applying the values to the two spheres used by Perman and Davies there results:

$$\begin{cases} \omega_L = 0.000135. \\ \omega_{\text{P.D.}} = 0.000188. \end{cases} \qquad \Delta_{\text{P.D.}} = 3 \omega_{\text{P.D.}} \left(\frac{r_2 - r_1}{r_1 r_2} \right) = + 0.000327. \\ r_1 = 0.4925 \, \text{dm}^2. \\ r_2 = 0.7510 \, \text{dm}^2. \end{cases} \qquad \Delta_L = 3 \omega_L \left(\frac{r_2 - r_1}{r_1 r_2} \right) = + 0.000235. \end{cases}$$

The difference in the apparent densities therefore would amount to only about a quarter of a milligram. In view of the difficulties attending the accurate weighing of large globes it would appear that the detection of adsorption by varying the surface is not very sensitive at one atmosphere pressure and zero degrees.

- * Dieterici, Zeit. für die Desam. Kalte Industrie, 21 (1904).
- † Young, Trans. Chem. Soc., 59, 37, 126, 929 (1891).

the specific volumes of the saturated vapor,* the constants of the equation being based on the measurements of the vapor phase isotherms obtained at the Leiden Laboratory. The saturated specific volumes used in the present tables were computed by means of the equation of state (33). This computation requires the saturation pressures which were determined from the vapor-pressure equation (31). In Fig. 5 the full line is drawn through the computed saturation specific volumes while the experimental values of Dieterici are entered as indicated together with the values computed by Holst. The full line is a representative line through the Dieterici and Holst values up to about 70 degrees, when the Dieterici data assumes a distinctly different trend. The specific volumes of the liquid obtained by Dieterici on the other hand show a trend in the opposite direction.

7. THE HEAT OF VAPORIZATION OF LIQUID AMMONIA

Measurements involving the heat of vaporization of ammonia were made by Regnault, and of these measurements twelve t survived the reign of the Commune and were later published. A careful consideration of Regnault's data involving the heat of vaporization of liquid ammonia has been given by Jacobus and Denton. Franklin and Kraus measured the quantity at the boiling point of liquid ammonia (-33.2), their value differing considerably from the value obtained by Estreicher and Schuerr. The original communication containing the Estreicher and Schuerr measurements is not available and hence a critical examination of the method used or a review of the data used in making necessary corrections is precluded. The method pursued by Franklin and Kraus consisted in vaporizing a definite volume of liquid ammonia at atmospheric pressure by supplying heat electrically. The calculation of the heat of vaporization requires the electrical energy, the density of liquid ammonia at -33.2° C., and the value of the calorimetric equivalent of the joule at 15 degrees. The value of the electrochemical equivalent of copper used by Franklin and Kraus was retained in the recalculation. The recomputed mean of the Franklin and Kraus measurements using the latest density data and the 15 degree cal. employed in the present tables accordingly is 336.58 Cal. at -33.2 degrees. A confirmation of the general correctness of this value may be obtained from the data concerning the elevation of the boiling point of liquid ammonia. The data in this connection is also due to Franklin and Kraus. The mean value of

* The Onnes equation reads:

$$pv = RT + \frac{a_1}{V} + \frac{a_2}{V^2} + \cdots$$
Chim. et de Physique (4) 24, 375 (18)

† Ann. de Chim. et de Physique (4) 24, 375 (1871).

‡ Jacobus, Trans. Am. Soc. Mech. Eng., 12, 307 (1891).

§ Jour. Phys. Chem., 2, 555 (1907).

|| Acad. Soc. Cracovie, Bull., 7A, 345 (1910).

¶ Am. Chem. Jour., 20, 841 (1898).

k in Van't Hoff's formula $\left(L = \frac{0.019885}{k} \frac{T^2}{k}\right)$, taken from the elevation of the boiling point where water and alcohol were used as solutes, is 3.398. The Van't Hoff formula leads to the value 336.8 Cal. as the heat of vaporization at -33.2 degrees. The value obtained by means of the Clapeyron-Clausius relation, $T \frac{dp}{dT}(v_1 - v_2) = L$, where the quantities on the left of the equation are obtained from the vapor-pressure equation (30), the equation of state (33), and the equation of the liquid volume, leads to the value 336.5 at -33.2 degrees.

The equation relating the heat of vaporization of liquid ammonia to the temperature depends on the heats of vaporization calculated by means of the Clapeyron-Clausius equation from the data obtained at the Research Laboratory. The value of L was computed at 80°, 40°, 0°, and at -70° C. The value of L at -70 degrees, on account of the uncertainty of the vapor-pressure equation at the lowest temperatures, cannot be considered to possess the same relative accuracy as the values of the heat of vaporization computed for the higher temperatures. The values calculated, however, at the temperatures mentioned were related to the temperature by means of a modified formula due to Thiesen. Thiesen formula connecting the heat of vaporization with the temperature is $L = C (T_c - T)^n$, where c and n are constants and T_c the critical temperature. The equation satisfies the current ideas concerning the terminal conditions of the curve (L, T) — namely, it yields a finite value of the heat of vaporization at the absolute zero and a zero value at the critical temperature. Taking logarithms of both sides of the equation there results $\log L = \log C + n \log (T_c - T)$, consequently the logarithm of L is a linear function of the logarithm of log $(T_c - T)$ and $\frac{d \log L}{d \log T} = n$. The equation was not found to hold strictly for liquid ammonia although it does satisfy the values very nearly. To modify the equation it was assumed that the differential could be expressed as $\frac{d \log L}{d \log T} = a + b (T_c - T)$. The resulting equation was then integrated, yielding the equation

$$\log_{10} L = 1.56817 - 2.822 \cdot 10^{-5} (T_c - T) + 0.43387 \log_{10} (T_c - T).$$
 (34)

The values of L calculated by the latter equation together with the Regnault-Jacobus and Kraus values are given in Table 2.

Gilles Holst,* in a recent publication concerning the properties of ammonia, computed the heats of vaporization of liquid ammonia from Regnault's data, using the more accurate Dieterici specific heat values now available in computing the corrections. The average temperature of Regnault's twelve measurements is 11.68° C., and the rate of change of the heat of vaporization with temperature may be taken from equation

^{*} Gilles Holst, Les propriétés thermiques de l'ammoniaque et du Chlorure de méthyle, Leiden (1914).

Regnault-Jacobus-Denton

(34) to reduce each of Regnault's measurements to the average temperature. The result of this averaging is 295.7 Cal., whereas equation (34) leads to the value 294.3 Cal. at 11.68 degrees. The average Regnault value is accordingly 0.5 per cent higher than the value derived from the equation.

Temperature	Calculated by equation (34)	Observed	Percentage difference	Observer
-33.4 -33.2	336.7 336.5	321.3 336.6	-4.58 +0.03	Estreicher and Schuerr Franklin and Kraus measured
-33.2	336.5	336.8	+0.08	Franklin and Kraus from ebul- lioscopic constant
-23.71 -19.55	328.1 324.5	316.1 335.1	$ \begin{vmatrix} -3.6 \\ +3.2 \end{vmatrix} $	Regnault—Jacobus—Denton
- 9.72 7.80 9.52	316.0 298.4 296.7	317.0 293.0 295.0	+0.3 l -1.8 -0.6	
10.15	296.0 295.4	202.4 288.1	-1.2 -2.5	
10.90 10.99 11.00	295.3 295.1	287.0 293.3	-2.8 -0.6	
11.04	295.1 295.1 294.8	291.3 292.5 285.8	-1.3 -0.9 -2.0	Regnault—Jacobus
12.60 12.94	293.5 293.1	201.6 283.8	-0.6 -3.1	
15.53 16.00	290.4 289.9	285.2 294.0	-1.8 +1.4	

TABLE 2. VALUES OF HEAT OF VAPORIZATION L

Holst in his summing up of the properties of ammonia has computed the heats of vaporization by means of the Clapeyron equation, using the specific volumes of the saturated vapor based on the Onnes "virial" equation of state and using values of $\frac{dp}{dT}$ derived from a careful study of Regnault's vapor-pressure measurements. Table 3 contains the Holst values compared with the values computed by means of equation (34).

296.8 296.5

292.0

291.8

17.00

19.53 28.18

29.22 30.92 288.9

276.4

TABLE 3

Temperature	Computed by Holst	Computed by equation (34)	Percentage difference
-40	328.5	341.98	-3.9
– 30	322.5	333.62	-3.3
- 20	316.0	324.86	-2.4
– 10	309.0	315.74	-2.I
0	301.4	306.01	-r.s
+10	293.2	296.01	-0.9
+20	284.4	285.40	-0.4
+30	274.8	274.43	+0.14
+30 +40	264.2	262.67	+0.67

Regnault's values of the vapor-pressure were perceived to be low by Holst, and it is now known that the corrections applied by Regnault to his mercury thermometer below zero were in error. This circumstance would make uncertain values of $\frac{dp}{dT}$ resulting from the vapor-pressure curve and also the values of L calculated by means of the Clapeyron equation. A glance at the L diagram makes evident at once the erratic trend of the Regnault data.

Accurate experimental values of the heat of vaporization of liquid ammonia are necessary in the temperature interval between o degrees and 20 degrees; however, the Franklin-Kraus value at the boiling point and the mean Regnault value at 11.68 would indicate that equation (34) represents the heat of vaporization with substantial accuracy.

8. THE SPECIFIC HEAT-CAPACITY OF AMMONIA VAPOR

The measurements of the specific heat-capacity of ammonia have been reviewed by Nernst* and the results summarized in the equation:

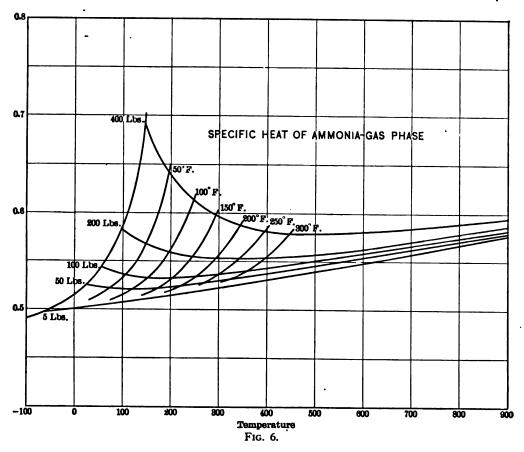
$$C_{p, 1 \text{ atm.}} = 8.62 + 0.002 t + 7.2 \cdot 10^{-7} t^3.$$
 (35)

The equation gives the heat-capacity for one formula weight or 17.034 grams. The equation of state (33) applied in connection with the equation $C_v = C_p - T\left(\frac{\partial p}{\partial T}\right)_r \left(\frac{\partial v}{\partial T}\right)_r$ leads to the equation for C_v as follows:

$$C_{\nu} = 0.35116 + 1.055 \cdot 10^{-4} T + 6.05 \cdot 10^{-8} T^{2}.$$
 (36)

Accordingly, the specific heat at constant pressure is given by the equation

$$C_p = 0.35116 + 1.055 \cdot 10^{-4} T + 6.05 \cdot 10^{-8} T^2 + \frac{R}{\left(1 - \frac{\alpha \delta}{v^2}\right) - \frac{2 a}{RT} \frac{(v - \delta)^2}{(v - l)^3}}, (37)$$


since
$$\left(\frac{\partial p}{\partial T}\right)_{v} = \frac{R}{(v-\delta)}$$
 and $\left(\frac{\partial v}{\partial T}\right)_{p} = \frac{v-\delta}{T} \left(\frac{1}{\left(1-\frac{\alpha\delta}{v^{2}}\right)-\frac{2a}{RT}\frac{(v-\delta)^{2}}{(v-l)^{3}}}\right)$

The quantity $\int C_p dT$ or the integral heat along a constant pressure curve must be obtained by integrating graphically the term

$$\frac{R dT}{\left(1 - \frac{\alpha \delta}{v^2}\right) - \frac{2 a}{RT} \frac{(v - \delta)^2}{(v - l)^3}}.$$

Fig. 6 gives a picture of the C_p field. At high temperatures and low pressures the equation (37) tends to resolve into $C_p = C_v + R$ as in fact the diagram illustrates.

^{*} Zeitschr. f. Electrochemie, 16, 96 (1910).

9. THE ENTROPY OF AMMONIA VAPOR

Equation (14) gives for the entropy $\Phi = \int \frac{C_v dt}{T} + R \int \frac{dv}{(v-\delta)} + \Phi_0$. The main difficulty that arises in the use of this equation is the integration of $\frac{dv}{v-\delta}$ which contains the transcendental δ . Up to the present time no integral has been found for this expression in terms of ordinary functions. One method, however, of integrating the function is as follows:

assume
$$\int \frac{dv}{v - \delta} = \log(v - \delta) + \alpha\beta \int \frac{1}{v^2} \cdot \frac{e^{-\frac{\alpha}{v}} dv}{(v - \delta)}.$$
 (38)

The problem now is reduced to the integration of the second term of the right-hand member, and since $d\frac{I}{v} = d\rho = -\frac{I}{v^2} dv$ it follows that

$$\alpha\beta \int \frac{\rho \, d\rho}{e^{\alpha\rho}} \cdot \frac{1}{1 - \frac{\beta\rho}{e^{\alpha\rho}}} = \alpha \left[\int \frac{\beta\rho \, d\rho}{e^{\alpha\rho}} + \int \left(\frac{\beta\rho}{e^{\alpha\rho}}\right)^3 d\rho + \cdots + \int \left(\frac{\beta\rho}{e^{\alpha\rho}}\right)^n d\rho \right] \cdot (39)$$

It can be easily shown that the series part of (38) converges for all values of the variable ρ .

Let $e^{\alpha \rho} = z$, whence

$$\int \frac{\beta \rho}{e^{\alpha \rho}} d\rho = \frac{\beta}{\alpha^2} \int \frac{\log z}{z^2} dz,$$

and integrating this equation in z there results

$$\int \frac{(\log z)^n}{z^{n+1}} dz = -\left[\frac{1}{n} \left(\frac{\log z}{z}\right)^n + \frac{1}{n} \left(\frac{\log z}{z}\right)^{n-1} \frac{1}{z} + \frac{n-1}{n^2} \left(\frac{\log z}{z}\right)^{n-2} \frac{1}{z^2} + \frac{(n-1)(n-2)}{n^3} \left(\frac{\log z}{z}\right)^{n-3} \frac{1}{z^3} + \cdots + (n+1) \text{ terms.}$$
 (40)

Applying (40) to each member of the series, collecting and rearranging, leads to the expression

where
$$p = \frac{\beta}{\alpha} \cdot \frac{\log z}{z}$$
, $k = \frac{\beta}{\alpha} \cdot \frac{1}{z}$.

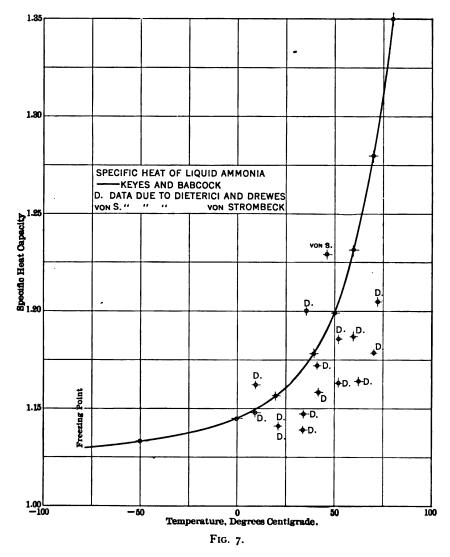
Table 4 represents the values of these series terms for various values of the density ρ of ammonia. In spite of the somewhat formidable appearance of the series portion of the integral it is seen that the series converge with such rapidity that the labor of calculating is not excessive. The computation of the series at 25 c.c., 50 c.c., 100 c.c., and 500 c.c. is sufficient, since beyond 500 c.c. the series gives a constant. In practice a plot of $\Sigma f(\rho)$ is most convenient. The complete expression for the entropy may be written as follows:

$$\Phi = 0.80859 \log_{10} T + 1.055 T \cdot 10^{-4} + 3.025 T^{2} \cdot 10^{-8} + 0.2688 \log_{10} (v - \delta) + R\Sigma f(\rho) + \Phi_{0}.$$
 (41)

For volumes greater than 200 c.c. per gram $R\Sigma f(\rho)$ may with sufficient accuracy be assured constant.

ρ=0.05	ρ=0.02	ρ=0.01	ρ=0.002	ρ=0.00I	ρ=0.0002	Series Equation Above
1.26177	1,70600	1.0020	2.0802	2.1057	2.1241	k series
0.27012	0.02732	0.00035	0.00042	0.00011		p series
0.07114	0.00407	0.00077	0.00001			p² series
0.02026	0.00063	0.00006		,		p³ series
0.00608	0.00010					p series
0.00182	1					p ⁵ series
0.00055	1					p ⁵ series
0.00016	0.19587	0.12140	0.02004	0.01465	0.00297	p ⁷ series
0.40939	0.18182	0.09344	0.01909	0.00956	0.00192	$\log\left(1-\frac{\beta\rho}{e^{\alpha\rho}}\right)$
2.04122	2.11671	2.12702	2.12876	2.12002		$\Sigma f(\rho)$

TABLE 4


10. THE SPECIFIC HEAT-CAPACITY OF LIQUID AMMONIA

In carrying out accurate heat-capacity measurements by the method of mixtures, it is necessary to have a large difference of temperature between the thermostat and the calorimeter, in order that the resulting temperature-change may be sufficiently large to permit the necessary percentage accuracy. There is considerable difficulty involved in obtaining the precise value for the water-equivalent of the calorimeter, and also in obtaining the value of the specific heat of the steel container or other receptacle containing the ammonia to be experimented on.

The following method of measuring heat-capacities was suggested by Dr. Charles A. Kraus of the Research Laboratory. A steel bomb containing liquid ammonia under the pressure of its saturated vapor is brought to a constant temperature in a thermostat above the calorimeter; it is then dropped into a calorimeter containing a definite weight of water, and the temperature-change of the calorimeter is observed. Another steel bomb identical with the first, but containing water under the pressure of its saturated vapor, is placed in the thermostat and dropped into the calorimeter. The weight of water in the water bomb is adjusted by repeated experiments until it gives practically the same temperature-change as the ammonia bomb. Omitting corrections, the specific heat-capacity of the ammonia would vary as the ratio of the weight of water to the weight of ammonia multiplied by the heat-capacity of the water.

This method does away with many of the objections to the method of mixtures. It is, of course, dependent for operation on a large temperature-difference between the thermostat and the calorimeter, but the errors are the same or nearly the same for both the ammonia and the water experiments and consequently compensate.

Mr. Henry A. Babcock after having completed the measurements of the specific heat-capacity by the method already outlined undertook the development of a method which would permit the measurement of the heat-capacity over very small temperature intervals and at various temperatures approaching the critical temperature. The method consisted essentially in rotating a steel ammonia container submerged in oil in a silvered Dewar tube. Measured amounts of electrical energy were introduced by means of a combined platinum resistance heater and thermometer. The amount of energy necessary to heat the oil and container was determined at a number of intervals between 20 and 120 degrees. The electrical energy necessary to raise the apparatus through one degree with the ammonia present was then obtained. The heat capacity of the

ammonia, after making the necessary corrections, is thus the difference between the two series of measurements at corresponding temperatures. These latter measurements have not been included in the equation used in the present tables, since the two more accurate values obtained by Mr. Babcock cover the practical range of temperature required in engineering work.

The equation taken to represent the saturation liquid specific heat-capacity is somewhat arbitrary. It seems probable that the heat-capacity, because of the term $\frac{dv}{dT}$, becomes infinite at the critical temperature. For this reason the empirical equation chosen to represent the heat capacity was

$$C_{a_1} = 1.13747 - \frac{5.7575}{(T_c - T)} + \frac{898.53}{(T_c - T)^2}$$
 (42)

This equation passes through the two measurements made by Mr. Babcock. The course of the values is illustrated by Fig. 7 in which have been inserted the values reported by Dieterici. The equation for the integral heat referred to o° C. is

$$\int_{278.1}^{T} C_{\bullet_{\bullet}} dT = 1.13747 T + 13.257 \log_{10} (T_c - T) + \frac{898.53}{T_c - T} - 345.556.$$
 (43)

Table 5 gives a list of values as smoothed by Dieterici and reported in the "Landolt and Bornstein Tabellen." The Dieterici or Drewes values should be increased by about one per cent because of the calorie in which the results are expressed. The values given by other observers are also included for comparison.

TABLE 5. SPECIFIC HEAT-CAPACITY OF LIQUID AMMONIA

Drewes	o° C.	0.876	1.1450
Drewes	10	1.140	1.1501
Elleau & Ennis	10	1.02	1.1501
Drewes	20	1.10	1.1570
Ludeking & Starr	28	o.886	1.1642
Drewes	30	1.218	1.1664
Drewes	40	1.231	1.1796
von Strombeck	45	1.220	1.1883
Drewes	50	1.230	1.1088
Drewes	6o	1.240	1.2275

• • . .

PART II TABLES OF THE THERMODYNAMIC CONSTANTS OF AMMONIA

DESCRIPTION OF THE TABLES

Table I gives the thermodynamic properties of saturated ammonia with the temperature as the argument, while Table II gives the properties with the pressure as the argument. The lower limit of the temperature table is -100° F.; the values being tabulated for each degree to 150° and to 200° for each five degrees.

The pressure table (Table II) is complete for every pound pressure from five to two hundred pounds pressure, from two hundred pounds for every two pounds to three hundred pounds pressure, for every ten pounds to five hundred pounds pressure, and for every twenty-five pounds to seven hundred pounds pressure.

The superheat table (Table III) gives the temperature, the total heat of the liquid, the vapor volume of liquid and vapor, and the entropies of the liquid and vapor corresponding from the saturation pressure to four hundred pounds. The total heat, the volume of the vapor and the entropy of the vapor is extended into the superheat three hundred degrees, every ten degrees of superheat being tabulated to two hundred degrees and every fifty degrees from two hundred degrees to three hundred degrees superheat.

In calculating the various quantities appearing in the tables large graphs were constructed from the values calculated from the equations already discussed. The vapor pressures were calculated corresponding to each 18° F. interval using equation (30). A check on the values tabulated from the graphs was subsequently obtained by calculating the pressure at temperatures nine degrees from the pressures which served to construct the graph.

The heat of the liquid was obtained by calculating the values needed for the graph from equation (43). This equation is obtained by integrating equation (42) with respect to the temperature. The values of entropy of the liquid are given by the equation which results from the integration of (42), after first dividing by the temperature. A general check on the values obtained by the method outlined was subsequently obtained by calculating the rates of change of the quantities from the corresponding equations which result by differentiation with respect to the temperature and comparing these calculated rates of change with the successive differences of the tabulated quantities.

The volumes at constant superheat (Table III) were calculated at suitable intervals from equation (33) and their reciprocal, or the density plotted against the saturation pressure. The resulting graph is nearly

a straight line which greatly facilitated the reading of the densities. The densities were afterward converted into volumes by means of a table of reciprocals.

The total heat was obtained by graphically integrating the graph of the specific heat-capacity of the vapor plotted against the temperature and adding the quantities so found to the total heat of the saturated vapor. The graph of the entropy of the vapor was calculated from equation (41).

The consistence of the superheat table was checked by applying the equation $\left(\frac{\partial \phi}{\partial T}\right)_p = \frac{C_p}{T}$ in the following manner: Values of C_p were calculated for the vapor and compared with the differences in the total heat quantities at constant pressure. These values divided by the average absolute temperature were then compared with the differences in the tabulated entropy at constant pressure.

The Mollier Chart. — The solution of many refrigeration problems is greatly facilitated by the use of the usual heat content-entropy or Mollier diagram. The diagram accompanying the tables, I, II, and III, has curves at constant pressure, curves at constant quality, and constant temperature. The ordinates are heat contents and the abscissæ are entropies.

To bring the diagram into convenient compass oblique coördinates have been used. The horizontal lines are lines of constant heat content. The oblique lines are inclined at an angle of thirty degrees to the horizontal axis. Attention is directed to the fact that twice the vertical distances are equal to distances along the oblique lines.

щ
2
5
E
K
2
$\mathbf{\Xi}$
Д
Σ
函
_

<u>.</u>		Sp. vol., cu.	Density, 1b.	Heat content	Latent heat	Heat content		Internal energy D.t.u.		f domina	
•	per sq. in.	ft. per lb.	per cu. ft.	of liquid	of evap.	of vapor	Evap.	Vapor	Liquid	Evap.	Vapor
	Q.	41	# \$ ⁷	ő	ם	ō	ď,	Ū,	•	-1 (F	ψ,
81	1.112	106.0	9.00108		663.4		621.7		:	1.8437	
80	1.408	101.6	01000		650.6		617.3			1.8004	:
88	1.740	132.1	.8757		655.8		612.0	:	:	1.7750	:
	2.134	1001	71000		652.0		608.4	:		1.7415	:
	2.595	6.06	001100		648.1	:	603.0	:	:	1.7086	:
	0	7	1		7					1 6.76	
- 57	3.108	70.10	0.01313	:	044.2	:	599.4		:	1,0/05	
	3.780	04.20	.01558	:	040.3	:	2.4.0 2.4.0	:	:	1 6143	
	4.533	54.20	.01634	:	030.3	:	4.00		:	5843	
	5.378	40.09	.02170	:	032.3	:	505.9	:	:	1.5547	
	0.373	39.20	.02532	:	0.00.3	:	301.3	:		1.334/	
	7.513	33.00	0.02050	-03.2	624.2	531.0	8.925	483.6	-0.2076	1.5247	1.3171
	7.761	32.87	.03042	-02.1	623.4	531.3	575.8	483.8	2048	1.5189	1.3141
1	8.014	31.89	.03136	0.06-	622.5	531.6	574.9	484.0	2020	1.5132	1.3112
	8.272	30.97	.03229	8.68	621.7	531.9	574.0	484.2	1992	1.5075	1.3083
	8.541	30.00	.03323	-88.6	620.0	532.3	573.0	484.4	1965	1.5019	1.3054
	8 80	70 00	0.24.20	-87.6	1.009	522.6	672.I	484.6	-0.1038	1.4063	1.3025
1	980.0	28.42	.03510	-86.4	610.3	532.0	571.2	484.8	1161. –	1.4907	1.2996
	0.177	27.62	.03621	-85.2	618.4	533.2	570.2	485.0	1884	1.4851	1.2967
	9.675	26.84	.03726	-84.0	617.5	533.5	569.3	485.2	1857	1.4795	1.2938
	9.974	26.09	.03833	-82.9	616.7	533.8	568.4	485.4	1830	1.4740	1.2910
	10.282	25.26	0.02043	8.18	615.0	534.1	567.4	485.6	-0.1803	1.4685	1.2882
	10.600	24.65	.04057	-80.7	615.1	534.4	566.5	485.8	9221 -	1.4630	1.2854
	10.030	23.07	.04172	- 70.6	614.3	534.7	565.6	486.0	1749	1.4575	1.2826
	11.261	23.31	04200	1,87	613.4	535.0	564.6	486.2	1722	1.4521	1.2799
36	109.11	22.67	.04411	-77.3	612.6	535.3	563.7	486.4	2691. –	1.4467	1.2772
	11 063	9		, 92	, 119	635.6	862.8	486.6	-0.1668	1.4413	1.2745
	200.00	3 :	2555		/:	2000	26. 2	8 98,	1491	1.4250	1.2718
45	12.312	21.47	.04050	-75.0	0.10.0	535.0	501.0	8,004 0.054		1.4205	1.2601
	200.21	60.00	/0/4/0/) (5,0)	010.1	330.5	9	187.5	183	1.4262	1.2664
	13.050	20.33	01040	97.7	7.00	4.000	9	184	1921	1.4100	1.2628
	13.439	19:79	.05053	0.1/1	ج د د	230.1	239.0	*: / 2			

eg
tinn
Ş
(4)
UR.
LAT
PEF
EM
_

Temp. Pressure 1b. 6 1 30 13.830 - 29 14.332 - 28 14.645 - 20 13.830 - 20 14.332 - 20 14.332 - 20 14.332 - 20 15.940 - 10 15.940 - 10 18.808 - 10 18.808 - 10 18.808 - 10 23.310 - 10 23.810 - 10 23.810 - 10 23.810 - 20 24.420 - 20 24.503 - 4 27.710	Sp. vol., cu.		_		-		•			
13.830 29 29 24.232 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 29 20 29 20 20 20 20 20 20 20 20 20 20	ft. per lb.	Density, 1b.	Heat content	Latent heat	Heat content	Internal	Internal energy B.t.u.		Entropy	
\$ 0.000				•		Evap.	Vapor	Liquid	Evap.	Vapor
0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4	# F	ő	ı	ő	ď,	ď	•	H	ı,
28222 28222 28222 28221	10 01	8110	 6 7	, ,		or it	784	70	97.7	1196 1
282 28 28 28 28 28 28 28 28 28 28 28 28	, ,	9000	5.00	5,45	5.755	1000	0.70	255		1000
2.50	// 07	.03320	2.00	3	537.3	22/.7	60/.0	(S)	1.4093	pc57-1
24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.20	.05470	100.2	.05.0	537.0	550.2	488.0	1.1462	1.4040	1.2550
0 24 22 1 0 0 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.80	.05018	-02.0	604.0	537.9	555.2	488.2		1.3987	1.2532
23 4 2 2 1 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 3	17.33	.05770	-62.0	1.409	538.2	554.3	488.4	1429	1.3935	1.2506
24.22.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 91	70000	8,4	6 609	000	1	7 887	.01.0	. 386.	2870 .
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.01	0.03924	0.40	003.2	530.4	553.3	0.00	10.1403	1.3003	1.2400
2.1. 0.08 L.0. 2.4 E.1. 0.08 L.0. 2.4 E.	10.45	0000	03.0	. 3	530.7	552.4	400.0	1370	1.3031	1.2455
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.03	.00238	-62.5	501.5	539.0	551.5	489.0	1350	1.3779	1.2429
1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.62	.06402	-61.3	9.00	539.2	550.5	489.2	1324	1.3727	1.2403
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.22	.06570	-60.2	200.1	539.5	549.6	489.4	9621. –	1.3676	1.2378
088 7-0 84 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.84	8.290	5	800	8 00	9 873	28,	1273	1 2625	1 2262
28 7-0 84 E E I 0 0 8 7 0 8 4 E C		26,500	200	200	2000	340.0		7, 1	2000	555
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14.47	01000	20.0	200.0	540.0	547.0	0.66	1240	1.55/4	1.2320
24 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	14.11	.07067	1 50.0	597.1	540.2	540.7	489.8	1221. —	1.3523	1.2302
0 84 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.70	.07267	-55.7	590.2	540.5	545.7	490.0	2611	1-8472	1.2277
24 1 1 1 2 2 4 2 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13.43	.07446	-54.6	595.4	540.8	544.8	490.3	6911. –	1.3422	1.2253
4 E E I I I I I I I I I I I I I I I I I	13.11	0.07628	-53.5	504.5	541.0	543.8	400.3	-6.1144	1.3372	1.2228
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12.70	.07810	-52.3	503.6	541.3	542.8	400.5	0111	1.3322	1.2203
11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	12.48	.08013	-51.2	592.7	541.5	541.0	400.7	1003	1.3272	1.2179
11 0008 70 53 4 55	12.18	.08210	- 50.0	8.165	541.8	540.0	400.0	- 1068	1.3222	1.2154
00% ~0 24%	11.89	.08410	-48.9	590.0	542.0	539.9	491.0	1042	1.3172	1.2130
000 ro n4 m	Ş.	0.080.0	8 1 1			000	1 101	1	1 2122	1 2106
νω νο ν + ω ·	11 33	2882	1		2	2000		7000	5.00	800
1 CO 10 4 W C	11.34	4.000	7.04	2,000	244.5	237.9	491.2	566	1.30/3	2002.1
-0 N+W	5	2000		2	7 4 5 7	2,75	4.164	9	2500	2001
N 4 W c	6/5	65.60	4.4	4./00	543.0	530.0	491.0	ا چون کون	1.29/7	1.2034
N 4 W c	10.54	.09479	-43.3	580.5	543.2	535.1	491.8	8160. 1	1.2928	1.2010
400	10.30	0.00200	-42.1	585.6	543.5	534.1	402.0	-0.0803	1.2880	1.1087
w .	10.00	00040	-41.0	584.7	543.7	533.1	402.1	1.0868	1.2831	1.1063
•	9.84	9101.	130.8	583.8	544.0	532.1	402.3	0843	1.2783	1.1040
•	19.6	.1040	1.38.7	\$82.0	544.2	531.2	402.5	8180. –	1.2735	1.1017
-	0.30	1001	127.6	\$82.0	544.4	530.2	402.6	10,00	1.2687	1.1804
	-	•	5		•		***	?	•	.

TEMPERATURE. — Continued

				•	TOWN THE PARTY	TYPE					
Temp.	Pressure, lb.	Sp. vol.; cu.	Density, lb.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
;	ne sec. m.	it. per 10.	per cu. It.	om indimo	or evap.	or vapor	Evap.	Vapor	Liquid	Evap.	Vapor
ب	a	Ĭ,	H A	8	1	ď	ū,	U,	4	기타	φ1
	20	ď.	801	- 36 5	à	9113		4 007	89200-	7 2640	1.1872
-	76.50	01.0	0.100	30.5	201.1	. t	2.0.5	494.	90/90	2	4/01:1
- +	31.33	26.0	.1115	135.3	290.1	244.0	520.2	492.9	1.0743	1.2593	1.1050
a	32.00	8.77	6211.	-34.2	579.2	545.0	527.2	493.0	0718	1.2540	1.1828
8	32.87	8.58	.1165	-33.0	578.3	545.3	526.2	493.2	0093	1.2500	1.1807
4	33.66	8.39	.1192	-31.9	577.4	545.5	525.3	493.4	6990.	1.2454	1.1785
		,		•	,			_	٠,		•
S	34.47	8.20	0.1220	130.8	576.5	545.7	524.3	493:5	10.0044	1.2407	1.1703.
9	35.29	8.02	.1247	- 29.7	575.6	545.9	\$23.3	493.6	6190". –	1.2360	1.1741
7	36.14	7.84	.1275	- 28.5	574.6	546.1	522.3	493.8	0595	1.2314	1.1719
∞	37.00	29.2	.1304	-27.4	573.7	546.3	521.4	404.0	0570	1.2267	1.1697
6	37.87	7.51	.1333	- 26.2	, 572.8	546.6	520.4	494.2	0546	1.2221	1.1675
;	7.0	1		,		,	-			7	
0 1	30.70	7.35	0.1300	-25.I	571.9	540.8	519.4	404.3	-0.0522	1.2170	1.1054
II	39.08	7.19	.1391	124.0	571.0	547.0	518.4	404.4		1.2130	1.1032
12		7.03	.1422	- 22.8	570.0	547.2	517.4	494.0	1.0474	1.2084	1.1010
13	41.54	98.9	.1453		1.695	547.4	516.4	494.7	0450	1.2039	1.1589
4	42.49	6.73	.1486	- 20.0	508.2	547.6	515.4	494.8	0420	1.1994	1.1508
1.6	43.47	6.504	0.1516	2	667.0	8 27 8	7 7 7 7	405.0	-0.0403	1.1040	1.1547
92	44.45	6.456	1540	120	2,795	247.0	212.4	1.304	0278	1.1005	1.1527
12	45.46	6.220	1 5 83	17.7	500.2	247.9	1.0.1	405.2	0256	1.1860	1.1506
81	46.50	6.180	9191	- 16.0	564.3	248.2	511.4	405.4		1.1815	1.1484
19	47.54	6.061	.1650	-14.8	563.3	548.5	510.4	495.5	0307	1.1770	1.1463
8	48.60	5.034	0.1685	-13.7	562.4	548.6	4005	405.6	-0.0283	1.1725	1.1442
21	40.68	7.811	1721	-12.6	501.5	848.8	508.4	405.7	1 .0250	1.1681	1.1422
22	50.78	5.601	1757	- II.4	500.5	540.1	507.3	405.0	0235	1.1637	1.1401
23	\$1.00	5.576	1793	-10.3	\$50.6	540.3	206.3	406.0	0212	1.1503	1.1381
*	53.03	5.463	.1830	1 9.2	558.7	549.5	505.3	496.1	or88	1.1549	1.1361
2	2	2	8981	i	0 4	1	,	6 901	79.00	1021	1 1240
2.6	7	100.0	9001.		22/20	7.646	2	4.064	5100	6	966.
2 5	55.37	5.245	0001	6, i	550.0	549.9	503.2	490.3		1.1401	1,1320
/2	50.57	5.139	.1940		555.0	550.1	502.2	490.5	7110	1.1417	1.1300
20	57.79	5.037	1985	1 4.0	554.8	550.2	501.2	490.0	ا 900.	1.1374	1.1280
50	59.03	4.930	.3020		553.0	555.4	200.5	400.7	1,00. –	1.1331	1.1200

TEMPERATURE. — Continued

Temp.	Pressure, 1b.	Sp. vol., cu.	Density, 1b.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
:	ii da ii			Din bi		podes io	Bvap.	Vapor	Liquid	Evap.	Vapor
	Q.	4	HIP	ō	ı	ö	ď.	ď	\$	귀	*
9	60.20	4.838	0.2067	- 2.3	552.8	550.5	400.2	406.0	-0.0047	1.1288	1.1241
31	61.57	4.743	.2108		551.0	550.7	408.1	406.0	1 .8023	1.1245	1.1222
32	62.86	4.650	.2151	+ 0.0	\$50.0	5,00	407.1	407.1	+	1.1202	1.1202
3	64.17	4.550	.2103		240.0	551.0	406.2	407.3	.0033	0911.1	1.1187
*	65.51	4.400	.2238	2.2	549.0	551.2	495.1	497.3	.0047	1.1117	1.1164
35	66.87	4.182	0.2281	7.5	547.0	551.3	404.1	407.5	0.0070	1.1075	1.1145
300	68.26	4.208	.2327	7.4	547.0	521.5	403.1	407.6	000	1.1023	1.1126
3.4	99.00	4.216	.2372	9.4	546.0	551.6	402.0	407.6	0110	1.0001	1.110
.00	71.08	4.135	2418	8.9	545.0	821.8	401.0	407.8	.0130	1.0040	1.1086
3 6	72.54	4.050	.2465	80.00	543.9	551.9	400.0	498.0	1910.	1.0907	1.1068
4	74.01	3.979	0.2513	9.5	542.0	552.1	488.0	408.1	0.0184	1.0865	1.1049
41	75.51	3.004	.2561	10.3	542.0	552.3	487.8	408.1	.0207	1.0823	1.1030
43	77.03	3.830	.2611	11.5	541.0	552.5	486.7	498.2	.0230	1820.1	1.101.1
43	78.57	3.758	1992.	12.6	540.0	552.6	485.7	498.3	.0253	1.0740	1.0993
4	80.14	3.688	.2711	13.7	539.0	552.7	484.7	498.4	9/20.	1.0699	1.0975
45	81.73	3.619	0.2763	14.0	(537.0	\$52.8	483.6	408.5	0.0208	1.0658	1.0956
46	83.35	3.552	.2815	16.0	337.0	553.0	482.6	498.6	.0321	1.0617	1.0938
47	3	3.486	.2869	17.2	535.9	553.1	481.5	498.7	.0344	1.0576	1.0920
8	86.65	3.422	.2922	18.3	534.9	553.2	480.5	498.8	.0366	1.0535	1.000
6	88.33	3.359	.2977	19.5	533.8	553.3	479.5	499.0	.0389	1.0495	1.0884
လ	90.06	3.298	0.3032	20.7	532.8	553.5	478.4	400.1	0.0412	1.0454	1.0866
Şī	61.77	3.239	.3087	21.8	531.8	553.7	477.3	400.2	.0434	1.0414	1.0848
22	93.53	3.181	.3144	23.0	530.8	553.8	476.3	499.3	.0457	1.0374	1.0830
53	95.30	3.124	.3201	24.1	529.8	553.9	475.3	400.4	0479	1.0333	1.081
72	97.10	3.067	.3259	25.3	528.7	554.0	474.2	499.5	.0502	1.0292	1.0794
55	98.93	3.011	0.3321	26.4	527.7	554.1	473.1	400.5	0.0524	1.0252	1.0776
20	100.79	2.957	.3382	27.5	526.7	554.2	472.0	499.5	.0547	1.0212	1.0759
27	102.68	2.904	3444	28.7	525.6	554.3	470.9	499.6	.0569	1.0172	1.0741
58	104.60	2.852	.3506	29.0	524.5	554.4	469.9	499.8	.0592	1.0132	1.0724
20	106.55	2.802	.3560	31.0	523.5	5.4.5	468.8	400.8	.0614	1.0002	1.070

TEMPERATURE. — Continued

Temp.	Pressure, 1b.	Sp. vol., cu.	Density, 1b.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
i	ii X	i i	i i	5	i de de	od s	Evap.	Vapor	Liquid	Evap.	Vapor
-	۵.	V1	H .	ő	1	ů	U,	αı	¢,	JIL	ı.
	801	1	reye o	, , ,		4	- 47		9090		6890
3 4	46.54	2./32	0.3033	132.2	522.4	554.0	407.7	499.9	+0.0030	1.0052	000
10	110.53	2.704	.3098	33.3	521.4	554.7	400.0	499.9	.0050	1.0012	1.0071
07	112.51	2.657	.3764	34.5	520.3	554.8	465.5	500.0	1890.	.9973	1.0654
63	114.60	2.610	.3831	35.6	519.3	554.0	404.4	200.0	.0703	.9934	1.0637
\$	1.6.7	2.564	.3900	36.7	518.2	554.9	463.4	500.1	.0725	.9895	1.0620
65	118.9	2.520	0.3968	37.9	517.1	555.0	462.3	500.2	0.0747	0.0856	1.0603
8	121.1	2.477	.4037	30.0	516.0	555.1	461.3	500.3	0920	.0817	1.0586
67	123.3	2.434	.4108	40.2	514.9	555.1	460.2	500.4	1070.	8220	1.0560
88	125.4	2.393	.4179	41.4	513.8	555.2	450.1	500.5	.0813	.9739	1.0552
8	127.6	2.352	.4252	42.6	512.7	555.3	458.0	500.6	.0835	00/6	1.0535
Ş		,	200	0 (1	4,4,1	,	4,80	. 266.	0::0
2 ;	129.9	4.311	0.434/	43.0	511.0	555.4	450.0	26.7	5	0.000	1.0310
1/	132.2	2.272	.4401	4.0	510.5	555.4	455.8	500.7	.0879	.9022	1.0501
72	134.0	2.233	478	40.1	509.4	555.5	454.7	500.8	1000	.9583	1.0484
73	130.9	2.190	-4554	47.2	508.3	555.5	453.6	500.8	.0023	.9544	1.0467
47	139.3	2.159	-4632	48.4	507.2	555.6	452.5	500.9	.0944	.9506	1.0450
7.5	141.7	2.123	0.4710	49.5	506.1	555.6	451.4	\$00.9	9960.	0.9468	1.0434
92	144.2	2.087	.4792	20.7	505.0	555.7	450.3	501.0	8860.	.9430	1.0418
7.7	146.7	2.052	.4873	51.9	503.0	555.8	449.1	501.0	0101.	.9392	1.0402
28	149.2	2.018	.4955	53.1	502.8	555.9	448.0	So1.1	.1032	.9354	1.0386
2	151.8	1.984	.5040	54.2	501.7	555.9	446.9	501.1	.1054	.9316	1.0370
&	154.4	1.952	0.5123	55.4	500.6	556.0	445.8	501.2	0.1075	0.0278	1.0353
81	157.0	1.920	.5208	26.6	499.5	556.1	7-44	501.3	7601.	.9240	1.0337
83	159.6	1.889	.5294	57.7	498.4	556.1	443.6	501.3	6111.	.9202	1.0321
83	162.3	1.859	.5379	58.9	497.3	556.2	442.5	501.4	.1141	.9164	1.0305
84	165.0	1.829	.5470	0.08	496.2	556.3	441.4	501.4	.1163	92 16.	1.0289

reg
n/in
S
Ħ
5
٢
2
PE
E
召

Temp.	Pressure, 1b.	Sp. vol., cu.	Density, 1b.	Heat content	Latent heat	Heat content	Internal e	Internal energy, B.t.u.		Entropy	
:		i K		3		5	Evap.	Vapor	Liquid	Evap.	Vapor
	E.	<u>-</u>	# #	ő	r	ő	U,	ď	÷	alfi	•
85	167.8	1.799	0.5559	61.2	495.1	556.3	440.3	501.4	0.1184	0.9088	1.0272
×	170.5	1.770	.5650	62.4	494.0	556.4	439.I	501.5	1206	.0050	1.0256
37	173.3	1.742	.5744	63.6	492.8	556.4	437.9	501.5	.1227	.9013	1.0240
<u></u>	176.2	1.714	.5834	64.8	491.7	556.5	436.7	501.5	.1249	9268.	1.0225
<u>s</u>	1.671	1.687	.5928	0.99	490.5	556.5	435.6	901.0	.1270	.8939	1.0200
2	182.0	1.660	0.6028	67.1	489.4	556.5	434.5	901.6	0.1291	0.8902	1.0193
16	185.0	1.633	.6124	68.3	488.2	556.5	433.3	9.105	.1312	.8865	1,0177
7	188.0	1.607	.6223	69.5	487.0	556.5	432.2	501.7	.1333	.8828	1,0161
3	0.161	1.581	.6325	70.7	485.9	556.6	431.0	501.7	.1354	.8789	1.014
4	194.1	1.556	.6427	6.17	484.7	556.6	429.8	501.7	.1375	.8752	1.0127
<u>~</u>	197.2	1.532	0.6527	73.1	483.5	556.6	428.7	8.105	0.1306	0.8715	1.01
9	200.4	1.508	.6636	74.2	482.4	556.6	427.6	501.8	.1417	8678	1.000
7	203.6	1.484	.6739	75.4	481.2	556.6	426.4	801.8	.1438	.8641	1.007
∞	206.9	1.461	.6845	200	. 480.0	556.6	425.2	Sor.8	.1459	.8605	1.006
8	210.1	1.437	.6959	7.77	478.8	556.5	424.1	801.8	.1480	.8569	1.0049
2	213.4	1.414	0.707	78.9	477.6	556.5	422.0	501.8	0.1500	0.8533	1.003
101	216.7	1.392	817.	80.0	476.5	556.5	421.8	501.8	.1521	.8497	1.00.1
2	220.1	1.370	.730	81.2	475.3	556.5	420.6	801.8	.1542	.8461	1.000
23	223.5	1.350	.741	82.4	474.1	556.5	419.4	501.8	.1563	.8425	.980
ᄚ	226.9	1.330	.752	83.6	472.9	556.5	418.2	501.8	.1584	.8389	.9973
×	230.4	1.310	0.763	84.7	471.7	556.4	417.1	801.8	0.1605	0.8353	0.995
×	233.9	1.290	9//	85.0	470.5	556.4	415.9	So1.8	.1625	.8317	.99
107	237.4	1.270	.787	87.1	469.2	556.3	414.7	501.8	.1646	.8281	.9027
%	241.0	1.251	.799	88.3	468.0	556.3	413.5	801.8	9991.	.8245	1100.
8	244.7	1.232	.812	4:08	400.8	556.2	412.3	501.7	.1687	.8200	9080

•	١	c	į
	1	į	ì
	•	į	
		į	١
•	į	į	
	1	į	
t	١	١	į
1	۰	٠	•
		Į	
		,	١
ı	2	Ľ	ì
ſ		ż	į
i			
ŀ	,		۰
Į	ï		
4	ť	Ŧ	٦
ı	•	v	
ı	į		i
١			١
ı		1	
۰	١		١
:	į		
ı		•	١

Sp. vol., cu.	Density, lb.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
per cu. it.		or induit	Of every	or value	Evap.	Vapor	Liquid	Evap.	Vapor
*15°	 ;	6	ı	ö	ŭ,	u,	•	러는	4
0.824		9.06	465.5	556.1	411.1	501.7	0.1708	0.8173	0.9881
.837		7.16	464.3	556.0	410.0	501.7	.1729	.8137	9986.
.850		92.9	463.0	555.9	408.8 8.8	201.7	.1749	.8101	.9850
.864		1.46	461.8	555.9	407.5	901.6	.1770	.8065	.9835
.876		95.3	460.5	555.8	406.3	901.0	06/1.	.8029	6186.
0.891		96.5	459.2	555.7	405.1	501.6	0.1811	0.7993	0.0804
40.		7.76	457.9	555.6	403.9	3o1.6	.1832	.7957	68/6
816.		98.9	456.6	555.5	402.6	501.5	.1853	.7921	.9774
.933		1.001	455.4	555.5	401.4	501.5	.1874	.7885	.9759
.946		101.2	454.1	555.3	1.004	501.3	.1895	.7849	.9744
0,060		102.4	452.9	555.3	398.8	501.2	9161.0	0.7813	0.0729
.975		103.6	451.6	555.2	397.6	501.2	.1937	.7777	.9714
& &		8.40	450.3	555.1	396.4	501.2	1957	.7741	8696
1.004		0.001	449.0	555.0	395.2	501.2	8/61.	.7705	.9683
810.1		107.2	447.7	554.9	393.9	501.1	8661.	.7669	.9967
1.033		108.4	446.4	554.8	392.7	501.1	0.2019	0.7633	0.0652
1.048		9.601	445.1	554.7	391.4	501.0	.2040	.7597	.9637
1.065		8.011	443.8	554.6	390.2	501.0	.2060	.7561	.9621
080.1		112.0	442.5	554.5	388.9	200.0	.2081	.7525	9096.
1.095		113.3	441.1	554.4	387.6	500.0	.2102	.7490	.9592
1.112		114.5	439.8	554.3	386.4	300.0	0.2123	0.7454	0.9577
1.129		115.7	438.5	554.2	385.1	500.8 8	.2144	.7418	.9562
1.145		6.911	437.2	554.1	383.8	500.7	.2165	.7382	.9547
1.163		118.1	435.8	553.9	382.5	200.6	.2185	.7347	.9532
1.18		110.1	1211	22.2	28T 2	900	2205	.7212	.0517

FEMPERATURE. — Concluded

Temp.	Pressure, 1b.	Sp. vol., cu.	Density, 1b.	Heat content	Latent heat	Heat content	Internal er	Internal energy, B.t.u.		Entropy	
	ner ad- mi-	. Det 10:	11 - 12 - 13 - 13 - 13 - 13 - 13 - 13 -				Bvap.	Vapor	Liquid	Evap.	Vapor
•	g,	4	#IF	\$	1	ő	ď,	ď,	•	JIE	4
135	344.4	0.816	901.1	120.6	433.1	553.7	370.0	500.5	0.2226	0.7277	0.0503
130	360.4	.824	1.214	121.8	431.7	553.5	378.6	500.4	.2247	.7242	.0480
137	365.4	.812	1.233	123.0	430.3	553.3	377.3	500.3	.2267	.7207	.9474
138	370.4	&	1.252	124.2	428.9	553.1	376.0	200.7	.2287	.7172	.9459
139	375.4	.788	1.269	125.4	427.6	553.0	374.7	500.1	.2308	.7137	.9445
140	380.6	0.777	1.287	126.6	426.2	552.8	373.4	500.0	0.2328	0.7102	0.0430
141	385.7	.765	1.307	127.8	424.8	552.6	372.1	499.9	.2349	.7067	.9416
142	390.0	.754	1.326	129.0	423.4	552.4	370.8	499.8	.2370	.7032	.9402
143	396.2	.743	1.346	130.2	422.0	552.2	369.5	400.1	.2390	2669.	.9387
144	401.5	.732	1.366	131.5	420.5	552.0	368.1	499.6	.2410	.6962	.9372
145	406.9	0.722	1.386	132.8	419.0	551.8	366.7	499.5	0.2430	0.6927	0.9357
146	412.3	.712	1.406	134.0	417.6	551.6	365.4	499.4	.2450	.6892	.9342
147	417.8	.702	1.426	135.2	416.2	551.4	364.0	499.3	.2470	.6857	.9327
148	423.3	.692	1.446	136.4	414.8	551.2	362.7	499.3	.2490	.6822	.9312
149	428.9	.682	1.467	137.7	413.3	551.0	361.3	499.I	.2510	.6787	.9297
150	434.5	0.672	1.488	139.0	411.8	550.8	360.0	499.0	0.2530	0.6752	0.0282
155	463.6	929.	1.597	145.0	404.5	549.5	353.1	498.1	.2635	.6577	.9212
8	404.0	584	1.712	151.3	306.9	548.2	346.0	497.3	.2739	.64or	.9140
165	526.0	445.	1.838	157.7	389.1	\$46.8	338.8	496.5	.2843	.6225	8906.
170	559.4	.506	1.976	164.2	381.1	545.3	331.4	495.7	.2947	.6049	9668.
175	594.4	0.472	2.119	170.9	372.8	543.7	323.9	404.0	0.3052	0.5872	0.8924
8	631.2	14.	2.268	177.1	364.3	542.0	316.3	404.I	.3157	.5695	.8852
185	669.5	.412	2.427	184.8	355.6	540.4	308.4	493.3	.3265	.5516	.8781
8	709.5	.385	2.597	192.2	346.5	538.7	300.3	492.5	.3376	.5335	.8711
195	751.4	.358	2.793	199.0	337.2	537.1	291.9	491.8	.3489	.5152	.8641
900	100	224	2007	207.0	227 €	626.4	282.2	T 107	2000	9907	2007

PRESSURE TABLE

Pressure,	Temp.	Sp. vol.,	Density, 1b.	Heat content	Latent heat	Heat content	Internal energy, B.t.u.	rgy, B.t.u.		Entropy	
į	4	Cur 11: 10:		pm bii io	Din Miles		Evap.	Vapor	Liquid	Evap.	Vapor
•	•	F	HIÑ	ő	IJ	ő	u,	υi	4	Ţ	ф.
H	- 102.65	219		:::::::::::::::::::::::::::::::::::::::			:		:	:	:
a	- 86.53	21.5				:		:::;:::	:		:
m		. 2				:	:		:	:::::::::::::::::::::::::::::::::::::::	:
4		61.2	-	:					:		•
ĸ	- 62.13	49.72	0.02013	-106.2	633.5	527.5	588.5	482.3	-0.2407	1.5940	1.3533
v		71.10	00000	1	8 009	000	6,6%	483 6	1966 0-	1 2661	1.3400
۱ د	30.04	6/14	0.02393		2,43	2,60	0.00		1010	10001	2046.
~0	52.23	30.23	00/20		620.4	530.3	2/6.0	404.5	1 .2135	1.3403	1.32/0
0		31.03	03150		023.2	4.150	3/0.7	405.4	7707:	Corc	1.3143
٥ إ	1 44.40	28.75	.03478	200.5	020.1	532.0	572.7	480.2	6161. –	1.4945	1.3020
0		20.03	.03039	6.20	017.3	533.0	500.0	400.9		1.4/45	0102.1
11		22.84	0.04105	1 70.3	614.6	524.8	266.8	487.5	-0.1743	1.4570	1.2827
13	- 24.82	21.00	04548		611.0	525.8	562.8	82.28	1.1665	1.4407	1.2742
13	1 22.10	20.40	.04002	- 73.1	9.009	536.6	561.3	488.2	1502	1.4250	1.2667
41	- 20.55	10.02	.05258	1 70.2	607.3	537.5	8.8	488.6	1523	1.4122	1.2500
15	- 27.16	17.81	.05615	- 67.5	605.1	538.3	556.7	489.2	1458	1.3995	1.2537
. `		•				•	,			Ġ	
01	- 24.87	10.78	0.05959	0.5.0	. 83.1	538.7	554.5	489.5	-0.1399	1.3872	1.2473
Ĭ,	- 22.69	15.85	.00309	- 62.4	1.100	539.5	552.2	489.8	1343	1.3759	1.2410
81	- 20.61	15.02	.00058	8 1	599.2	540.0	550.2	400.1	1289	1.3650	1.2361
19		14.30	.06993	- 57.9	597.4	540.5	548.3	4004	1238	1.3549	1.2311
9		13.66	.07321	- 55.7	595.6	541.0	546.4	490.7	% 1 1	1.3450	1.2262
21	- 14.84	13.025	0.07680	- 53.6	504.0	541.4	544.5	401.0	-0.1141	1.3358	1.2217
22	- 13.07	12.470	08010	9:1:0	502.4	541.7	542.8	401.3	9001.	1.3260	1.2173
23	- 11.36	11.965	.08354	1 49.6	800.8	542.2	541.1	401.5	1053	1.3182	1.2130
77		11.400	.08703	- 47.7	580.4	542.6	530.4	401.7	1101	1.3102	1.2001
25	80.8	11.065	.09033	- 45.9	588.0	543.0	537.8	491.9	0/60	1.3023	1.2053
ý	9	10.682	0.00362	- 44.2	486.6	541.1	2.925	402.1	-0.0022	1.2050	1.2018
3		10.308			28.7	243.6	24.00	403 3	1	1 2027	1.1082
- oc	3 5	900	1003	1		243.0	234.0	200	1	1,280.1	2002.1
2 8		6666		1	2 6	2.040	1.000	200	6000	55.5	2
50		9.049	.1030	39.5	502.7	244.2	532.0	492.7	.0023	1.2740	1.1917
ဇ္တ		9.344	.1070	- 37.0	581.4	544.5	530.0	492.9	6820. –	1.2073	1.1884
		_					-				

PRESSURE TABLE. -- Continued

Pressure,	Temp.	Sp. vol.,	Density, 1b.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
			•		•		Evap.	Vapor	Liquid	Evap.	Vapor
a	•	ı A	#IF	ő	1	ő	u,	αı	4	H	•
12	+0.67	190.0	0.1104	- 26.1	280.3	8777	£20.2	402.1	10.0755	1.2610	1.1866
	8	20.00	11127	- 24.6	1 023		27.7	103 3	- 0722	1.2540	1.1827
		25.00	75.11	1 22 1	27.7.1	1.010	A 902	2,004	ا	200	2
3:	77.0	200	2001	1.55	67/6	4.040	250.0	493.5	3 5	1.149	222
3. S.	5.65 5.65	8.084	.1238	-30.3	575.7	545.0	524.0	493.9	- - - - - - - - - - - - - - - - - - -	1.2374	1.1746
	,	,		•		,	(
36	6.83	7.870	0.1271	- 28.9	574.7	546.2	522.8	494.I	-0.0599	1.2321	1.1722
37	8.8	7.007	.1305	-27.0	573.0	540.4	521.0	494.3	0571	1.2209	1.1088
38	9.14	7.478	.1337	- 20.3	. 572.0	546.6	520.5	494.4	0543	1.2218	1.1075
6	10.25	7.292	.1308	125.0	571.0	240.8	519.4	494.5	0510	1.2108	1.1052
Q	11.34	7.117	.1403	-23.7	270.0	547.0	518.3	494.0	8 8 8 8	1.2119	1.1029
14	12.42	6.951	0.1438	-22.4	\$60.6	547.3	517.2	404.7	-0.0464	1.2067	1.1603
42	13.48	6.797	.1471	-21.2	568.6	\$47.5	516.1	8.404	1 .0438	1.2018	1.1580
43	14.53	6.646	.1505	120.0	567.7	547.7	515.0	404.0	1.0413	1.1969	1.1556
4	15.56	6.504	.1538	-13.8	206.7	547.9	513.9	495.0	l .0388	1.1924	1.1535
45	16.58	6.366	. 1570	17.7	565.8	548.0	512.9	495.1	0364	1.1879	1.1514
94	17.59	6.239	0.1603	-16.6	564:8	548.2	\$11.0	495.2	-0.0341	1.1835	1.1494
41	18.50	9119	.1635	-15.5	563.9	548.4	510.9	495.3	0318	1.1792	1.1474
8	19.48	2.998	1991.	-14.4	563.0	548.6	500.0	495.4	0295	1.1749	1.1454
\$	20.37	5.885	6691.	-13.3	562.1	548.8	500.0	495.5	0273	1.1708	1.1435
လွ	21.29	2.776	.1731	-12.2	561.2	549.0	508.1	495.6	0252	1.1671	1.1416
Sı	22.20	5.671	0.1763	-11.3	560.3	549.1	507.1	495.7	-0.0231	1.1628	1.1397
22	23.10	5.569	96/1.	-10.2	559.4	549.2	506.3	495.8	0210	1.1590	1.1379
S	23.97	5.471	.1828	1 9.2	558.5	549.3	505.4	496.1	0189	1.1552	1.1361
ž	24.84	5.376	.1860	8.2	557.7	549.5	504.5	406.0	0910. –	1.1514	1.1343
55	25.70	5.284	.1893	- 7.2	556.9	549.7	503.6	496.1	0149	1.1476	1.1326
56	26.53	5.195	0.1925	- 6.2	556.1	549.9	502.7	496.4	-0.0129	1.1439	1.1309
27	27.34	5.100	1957	- 5.3	555.3	550.0	801.8	496.3	0110. –	1.1403	1.1292
38	28.14	5.024	0661.	4.4	554.5	550.1	501.0	406.4	1000.	1.1367	1.1275
29	28.95	4.941	.2024	1 3.5	553.7	550.2	500.2	496.5	872	1.1331	1.1259
<u>۔</u>	92.00	, 96.	2,00	70	(()			7 70	4144		

Continued
Ĭ
ьį
BLE
TAE
ω
E
ESSI
RES

Penaltor, B., C.u., R., Perl. 10. Perc. 11. Rev. 10. Or. L. G., Perl. 10. Heat content one of the content of th					•	-						
10	Pressure,	Temp.	Sp. vol.	Density, Ib.	Heat content	Latent heat		Internal en	ergy, B.t.u.		Entropy	
1.0	i	:						Evap.	Vapor	Liquid	Evap.	Vapor
9.56 4.784 0.2000 - 1.7 559.1 550.4 408.6 - 0.0017 111247 31.34 4.711 .313 - 0.8 551.3 550.4 497.8 406.8 - 0.017 11124 33.57 4.571 .3185 + 0.1 550.4 550.4 497.0 - 0.027 11134 33.62 4.505 .320 550.4 497.4 407.1 .0036 11134 33.62 4.346 .328 3.7 497.4 407.2 .0035 11106 35.81 4.317 .326 5.1 407.4 407.1 .0036 11106 35.81 4.317 .326 5.4 551.2 407.4 407.6 11006 35.81 4.317 .326 5.4 551.4 407.4 407.6 11006 35.81 4.317 .326 5.4 551.4 407.4 407.6 11006 35.81 4.317 .326 547.7 551.4 <td< th=""><th>•</th><th>•</th><th>ĭ.</th><th># \$</th><th>ő</th><th>T</th><th>Ö</th><th>ď,</th><th>u,</th><th>4</th><th>I.T.</th><th>i.</th></td<>	•	•	ĭ.	# \$	ő	T	Ö	ď,	u,	4	I.T.	i.
3.5.1 4.774 0.2090 - 0.3 55.4.1 490.0 - 0.033 1.130 3.5.1 4.504 .2138 + 0.1 555.4 550.4 490.0 + 0.003 1.130 3.3.6 4.504 .2230 1.0 580.7 490.0 + 0.003 1.1130 3.3.6 4.505 .2220 550.7 490.0 490.0 + 0.003 1.1130 3.3.6 4.506 .2284 351.1 490.4 490.1 1.1130 3.5.1 4.406 0.2286 3.7 490.2 490.2 1.1130 3.5.2 4.107 .2284 3.5 51.4 491.2 497.2 1.1130 3.5.2 4.107 .238 5.9 51.4 497.2 497.2 1.1130 3.5.4 4.207 .238 5.9 51.4 497.2 497.2 1.1100 3.5.4 4.208 .231.2 490.2 497.2 497.2 1.1100 3.5.4 4.208	,	7	9					7 000	, ye,			
33.34 4,711 .2123 — 0.3 \$59.5 497.0 + 0.017 1.1227 33.48.7 4,571 .2123 — 0.3 \$59.5 497.0 + 0.002 1.1122 33.48.7 4,591 .2128 — 0.0 \$59.9 \$59.9 497.0 + 0.002 1.1152 33.60 4,490 .0228 2.7 \$49.9 \$59.9 497.0 - 0.003 1.1132 33.60 4,490 .0228 2.7 \$49.9 \$51.1 497.1 0.003 1.1132 35.61 4,437 .2346 4.3 \$51.1 497.4 497.4 0.003 35.51 4,437 .2346 \$51.2 497.4 497.4 0.003 35.52 4,437 .2346 \$5.4 \$51.5 497.4 497.4 0.003 35.51 4,437 \$4.9 \$54.2 \$51.6 497.6 0.003 1.1006 35.52 4,437 \$4.9 \$54.2 \$51.6 497.6 0.0	IO V	30.50	4.784	0.2000		552.I	550.4	490.0	490.7	-0.0035	1.1201	1.1227
33.11 4.640 2355 + 0.1 559.7 497.0 497.0 + 0.003 1.1194 33.57 4.571 2.220 1.9 549.2 559.7 497.0 497.0 + 0.003 1.1194 33.62 4.506 4.507 2.220 1.9 549.2 551.3 497.6 497.2 0.003 1.1196 33.61 4.476 2.220 1.7 548.5 551.3 497.4 497.3 1.1006 35.81 4.376 2.36 4.3 547.8 551.3 497.4 497.8 1.1100 35.81 4.476 2.36 5.1 547.8 551.4 497.4 0.003 1.1100 35.81 4.477 2.36 5.1 547.5 551.6 497.4 0.003 1.1005 35.41 4.03 4.03 4.04 4.07 0.003 1.1005 35.42 4.03 4.04 4.07 0.003 1.1005 4.03 4.04 4	02	31.34	4.711	.2123		551.3	550.5	497.8	400.8		1.1227	1.1211
33.87 4.571 .2188 1.0 5849.9 550.9 406.2 497.0 .0020 1.1162 33.62 4.495 .2220 1.9 549.2 551.1 495.4 497.1 .0038 1.1130 34.36 4.378 .2220 1.9 549.2 551.2 494.6 497.3 .0035 1.1008 35.10 4.376 .2346 3.5 54.8 551.3 499.4 497.4 .1009 35.11 4.376 .2346 5.1 545.7 551.6 497.4 .0009 1.1008 35.12 4.197 .2346 5.1 545.7 551.6 497.5 .0009 1.1008 37.22 4.197 .2348 5.4 551.6 497.4 .0109 1.1008 37.22 4.198 3.3 5.4 5.4 551.6 497.5 .0009 1.1008 37.22 4.196 .248 5.4 551.8 497.4 497.6 .0121 1	တိ	32.11	4.640	.2155		550.6	550.7	497.0	496.9		1.1194	1.1196
33.62 4.505 .2220 1.9 549.7 551.1 465.4 467.1 .0038 11130 34.36 4.440 0.2352 2.7 549.5 551.3 404.6 407.3 0.0035 111006 35.81 4.440 0.2354 3.5 547.8 551.3 407.4 .0005 111006 35.81 4.377 .2364 3.5 547.8 551.3 407.4 .0007 111006 35.81 4.376 .2360 5.1 546.4 551.3 407.4 .0009 111006 35.81 4.217 .2366 4.3 547.7 551.4 407.4 .0009 111006 37.22 4.139 .2440 7.5 545.0 551.6 407.4 407.6 .0103 11006 38.44 4.036 .2440 5.7 545.0 551.0 460.7 407.6 .0103 11006 40.06 3.927 .2481 542.0 552.0 480.7	25	32.87	4.571	.2188	0.1	540.0	550.0	406.2	407.0	.0020	1.1162	1811.1
34.36 4.440 0.2252 2.7 548.5 551.3 494.6 497.2 0.0055 1.1006 35.10 4.376 224 3.5 547.8 551.3 493.2 497.4 0059 1.1006 35.51 4.37 330 5.1 547.8 551.6 497.5 0059 1.1006 36.51 4.37 330 5.1 545.0 551.6 497.5 0037 1.1006 37.22 4.197 2383 5.9 545.7 551.6 497.6 0121 1.0064 37.22 4.197 2440 7.5 545.7 551.6 497.6 0121 1.0064 38.44 4.036 2440 7.5 544.3 551.8 497.6 0131 1.0064 40.00 246 274 9.1 542.2 552.0 449.7 407.9 0131 1.0064 40.00 276 276 9.0 542.2 552.1 448.3 <td>65</td> <td>33.62</td> <td>4.505</td> <td>.2220</td> <td>1.9</td> <td>549.2</td> <td>551.1</td> <td>495.4</td> <td>497.1</td> <td>.0038</td> <td>1.1130</td> <td>9911.1</td>	65	33.62	4.505	.2220	1.9	549.2	551.1	495.4	497.1	.0038	1.1130	9911.1
34.36 4440 0.2252 2.7 548.5 551.2 494.6 497.2 0.0055 1.1006 35.81 4.376 .234 4.3 547.8 551.3 493.4 497.4 .0005 1.1006 35.81 4.376 .234 4.3 547.8 551.4 497.4 .0005 1.1006 36.51 4.376 .2350 5.3 547.6 551.6 497.6 .0123 1.1006 37.22 4.197 .2440 7.5 545.0 551.6 497.6 .0137 1.1006 37.24 4.036 .2440 7.5 545.0 551.6 497.8 .0139 1.1006 40.00 4.036 .2440 7.5 545.0 551.9 497.6 .0137 1.0064 40.00 4.036 .2440 7.5 545.0 551.9 490.4 497.6 .0139 1.1006 40.00 4.036 .2440 7.5 545.0 480.7 .0131												
35.10 4,378 .284 3.5 547.8 551.3 403.9 407.3 .0072 1.1066 35.81 4,436 .2316 4.3 547.1 551.4 407.4 .0073 1.1066 36.51 4,256 .2376 .2376 5.4 551.6 407.7 .003 1.1066 37.22 4,197 .2346 5.4 551.6 407.7 .003 1.1066 37.22 4,197 .2446 5.5 551.6 407.7 .003 1.1064 37.23 4,197 .2446 5.7 551.6 407.7 .003 1.1064 39.44 4,090 .2446 9.1 542.9 552.0 469.7 407.8 1.0064 40.06 3.977 .2546 9.1 542.2 552.1 469.7 0.013 1.0064 40.06 3.977 .2546 9.9 542.2 552.1 468.7 0.015 1.0064 41.32 3.83 .204	8	34.36	4.440	0.2252	2.7	548.5	551.2	404.6	497.2	0.0055	1.1008	1.1151
35.81 4.37 2316 4.3 547.1 551.4 497.4 0089 1.1096 37.22 4.137 2386 5.1 546.4 551.5 497.5 0053 1.1096 37.22 4.139 2496 249 551.5 497.6 0137 1.0094 38.44 4.034 249 249 249 551.2 497.6 0137 1.0094 39.34 4.036 249 249 551.2 497.6 0137 1.0094 40.06 3.977 246 9.9 543.2 551.9 489.7 497.6 0137 1.0094 40.06 3.977 256 9.9 543.2 551.9 489.7 497.6 0137 1.0094 41.37 3.877 2546 9.9 541.2 552.2 487.6 498.1 0139 1.0094 41.37 3.887 027 3.54.5 552.2 486.2 498.1 1.0073	67	35.10	4.378	.2284		547.8	551.3	403.0	407.3	.0072	1.1066	1.1137
36.51 4.256 .2350 5.1 546.4 551.5 462.5 497.5 .0105 1.1005 37.22 4.197 .2383 5.9 545.7 551.6 497.5 497.5 .0107 1.0047 37.22 4.197 .2416 6.7 545.0 551.6 497.7 .0137 1.0047 39.44 4.034 .2449 7.5 544.3 551.8 497.8 .0137 1.0047 40.06 3.977 .2544 9.1 542.9 552.0 489.0 497.8 .0169 1.0047 40.06 3.977 .2546 9.1 542.2 552.0 489.0 496.0 .0185 1.0069 40.06 3.977 .2546 9.9 541.2 552.2 489.0 496.1 1.0069 41.37 3.879 .244.3 552.2 489.5 496.1 1.0079 41.38 3.740 .276 12.2 552.2 486.5 496.1 1.0777	.89	35.81	4.317	2316	4.	547.1	551.4	403.2	407.4	800.	1.1036	1.1123
37.22 4.197 .2383 5.9 545.7 551.6 401.8 407.6 .0121 1.0984 .37.23 4.197 .2383 5.9 545.7 551.7 401.1 407.7 .0137 1.0984 38.04 4.084 .2446 .2445 551.9 469.7 407.9 .0137 1.0918 39.34 4.036 .2461 .244.3 551.9 469.7 407.9 .0159 1.0984 40.06 3.977 .2546 9.9 542.2 551.9 489.7 407.8 .0159 1.0086 41.32 3.877 .2546 9.9 542.2 552.2 489.0 408.0 .0159 1.0360 41.32 3.879 .250 3.44.5 552.2 489.0 408.1 1.0360 41.32 3.89 .242 552.2 480.9 408.1 1.0360 41.32 3.89 .241.2 552.2 480.9 408.1 1.0750 41.38	8	36.51	4.256	.2350		546.4	2,175	402.5	407.5	5010.	1.1005	1.1100
37.93 4.139 0.2416 6.7 545.0 551.7 401.1 407.7 0.0137 1.0948 38.64 4.084 .3440 7.5 544.3 551.6 490.4 407.8 .0153 1.0018 38.44 4.036 .2441 8.3 544.3 551.6 490.7 407.8 .0159 1.0018	2.	37.22	4.197	.2383	5.0	545.7	551.6	491.8	497.6	.0121	1.0984	1.1096
35.44 4.039 2.441 7.7 545.0 551.0 490.4 497.1 20.3 36.44 4.036 -2481 3.5 543.6 551.0 480.7 497.6 20153 1.0389 40.00 3.977 -2546 9.1 542.2 552.0 480.0 497.0 20163 1.0389 40.00 3.977 -2546 9.1 542.2 552.1 488.3 498.1 20163 1.0360 41.32 3.879 0.2578 10.7 541.5 552.2 487.6 498.1 0.020 1.0377 41.34 3.879 0.2578 10.7 540.3 552.2 488.6 498.3 1.0377 42.67 3.760 -270 13.6 539.7 552.2 488.5 498.4 0.020 1.0777 44.58 3.056 -270 13.6 539.7 552.2 488.5 498.4 0.020 1.076 45.50 3.056 -2770 13.6	į	,	7	9140	,	1		1 107	103	2000	1 0072	1 1083
30.04	: 1	5,70	4.139	0.2410	· ·	5.65	224.7	1,164	1.164	75.00	70.	3
39.34 4.030 .2481 8.3 543.0 551.9 489.7 497.9 .0109 1.0889 40.06 3.977 .2514 9.1 542.9 552.0 488.3 498.0 .0185 1.0869 40.06 3.977 .2544 9.1 542.2 552.2 488.3 498.1 .00215 1.0869 41.32 3.879 0.2578 10.7 541.5 552.2 486.0 498.1 .00215 1.0864 41.97 3.83 .2640 11.5 540.3 552.4 486.0 498.3 .00215 1.070 41.97 3.83 .2640 12.2 540.3 552.4 486.2 498.3 .00215 1.070 43.28 3.740 .2706 13.6 539.1 552.7 484.8 498.4 .0245 1.070 45.84 3.653 .02737 14.3 538.5 552.8 484.2 498.4 .0245 1.070 45.81 3.563	72	30.04	4.004	.2449	7.5	544.3	551.0	4.00.4	407.0	.0153	1.0018	1.1070
40.00 3.977 .2514 9.1 542.9 552.0 486.0 496.0 .0185 1.0800 40.66 3.927 .2546 9.9 542.2 552.1 488.3 498.1 .0035 1.0800 40.66 3.927 .2546 11.5 540.3 552.4 486.0 498.3 .0200 1.0800 41.37 3.832 .2600 11.5 540.3 552.4 486.0 498.3 .0230 1.0777 42.67 3.746 .2642 12.2 552.4 486.4 498.3 .0230 1.0777 43.88 3.046 .2764 12.0 539.1 552.7 488.4 408.3 .0200 1.0777 44.54 3.653 .2766 13.6 539.1 552.7 488.4 408.4 .0200 1.0777 44.54 3.653 .2706 14.3 533.5 552.8 484.2 408.4 .0200 1.0777 45.10 3.563 .2803	73	39.34	4.030	.2481	8.3	543.0	551.9	489.7	497.9	6010.	1.0889	1.1057
40.66 3.927 .2546 9.9 542.2 552.1 488.3 498.1 .0200 1.0804 41.32 3.879 .0278 10.7 541.5 552.4 487.6 498.3 .0230 1.0777 41.97 3.832 .2010 11.5 540.9 552.4 486.9 498.3 .0230 1.0777 42.67 3.785 .2642 12.2 540.9 552.4 486.9 498.3 .0230 1.0773 42.67 3.740 .2704 12.2 540.3 552.6 486.4 498.4 .0245 1.0773 43.88 3.696 .2704 12.0 559.1 552.7 484.8 498.4 .0245 1.0753 44.54 3.653 0.277 14.3 539.7 553.7 484.8 498.4 1.0753 1.0764 44.54 3.653 0.277 1484.8 498.5 498.4 1.0753 1.0764 45.80 3.560 1.577 537.3	7.	40.00	3.977	.2514	1.6	542.9	552.0	489.0	498.0	.0185	1.0860	1.1044
41.32 3.879 0.2578 10.7 541.5 552.4 487.6 498.3 0.0215 1.0804 41.97 3.832 .2610 11.5 540.9 552.4 486.9 498.3 0.0215 1.077 42.67 3.785 .2642 12.2 540.9 552.5 486.2 498.3 0.0245 1.0750 43.28 3.740 .2674 12.9 539.7 552.6 486.2 498.4 0.0245 1.0750 43.88 3.696 .2770 13.6 539.1 552.7 484.8 498.4 0.0275 1.0750 45.17 3.653 0.277 14.3 538.5 552.8 484.8 498.5 0.0289 1.0750 45.17 3.600 .2770 15.0 537.9 552.0 483.5 498.5 0.0289 1.0641 45.80 3.568 .2803 16.4 533.0 480.3 498.6 0.0393 1.0547 46.41 3.527	75	40.66	3.927	.2546	6.6	542.2	552.1	488.3	498.1	.0200	1.0832	1.1032
41.97 3.83 .2610 11.5 540.9 552.4 486.9 498.3 .0245 1.0777 42.67 3.785 .2642 12.2 540.3 552.4 486.2 498.3 .0245 1.0777 43.28 3.740 .2674 12.9 539.7 552.7 485.5 498.4 .0275 1.0750 43.88 3.606 .2776 13.6 539.7 552.7 484.8 498.4 .0275 1.0750 44.54 3.653 0.2737 14.3 538.5 552.9 484.8 498.4 .0275 1.0706 45.17 3.610 .2770 15.0 537.9 552.9 488.5 .0289 1.0640 45.80 3.568 .2883 15.7 537.3 488.5 .0303 1.0640 45.80 3.568 .2883 16.4 553.0 488.2 .0303 1.0640 47.02 3.485 16.4 553.0 480.3 498.7 .0303 <td>92</td> <td>41.32</td> <td>3.870</td> <td>0.2578</td> <td>10.7</td> <td>541.5</td> <td>552.3</td> <td>487.6</td> <td>408.2</td> <td>0.0215</td> <td>1.0804</td> <td>1,1020</td>	92	41.32	3.870	0.2578	10.7	541.5	552.3	487.6	408.2	0.0215	1.0804	1,1020
42.67 3.785 .2642 12.2 540.3 552.5 486.2 498.4 1.0750 43.28 3.740 .2674 12.9 539.7 552.6 485.5 498.4 .0260 1.0723 43.88 3.096 .2706 13.6 539.1 552.7 484.8 498.4 .0275 1.0760 44.54 3.653 .2770 15.0 537.9 552.9 484.2 498.5 1.0760 45.17 3.610 .2770 15.0 537.9 552.9 484.2 498.5 1.0760 45.80 3.568 .2803 15.7 537.9 553.0 483.5 498.5 1.0640 46.41 3.527 .2835 16.4 536.0 553.0 482.9 498.6 1.0730 46.41 3.527 .2835 17.2 535.0 480.3 498.6 1.0750 46.41 3.527 .2835 17.2 535.3 480.3 498.7 1.0547	7.2	41.07	2.822	2610	11.6	240.0	552.4	486.0	408.3	.0230	1.0777	1.1008
43.28 3.740 .2674 12.9 539.7 552.6 485.5 498.4 .0275 1.0723 43.88 3.696 .2706 13.6 539.1 552.7 484.8 498.4 .0275 1.0706 44.54 3.697 .2706 13.6 539.1 552.9 484.2 498.5 1.0671 45.17 3.610 .2770 15.0 537.9 552.9 484.2 498.5 1.0646 45.80 3.568 .2803 15.7 537.9 552.9 482.9 498.5 1.0646 45.80 3.568 .2803 15.7 537.3 553.0 482.9 498.6 1.0506 46.41 3.527 .2835 16.4 536.6 553.0 482.2 498.6 1.0317 1.0506 47.02 3.485 .2808 17.2 535.9 480.9 498.8 0.0359 1.0547 48.33 3.446 0.2902 17.0 535.3 480.3 498.8 0.0359 1.0533 48.33 3.347 .2907 19.2	78	42.67	3.785	.2642	12.2	540.3	552.5	486.2	408.3	.0245	1.0750	1.0006
43.88 3.696 .2706 13.6 539.1 552.7 484.8 498.4 .0275 1.0706 44.54 3.653 0.2737 14.3 538.5 552.8 484.2 498.5 0.0289 1.0071 45.80 3.610 .2770 15.0 537.3 553.0 483.5 498.5 0.0389 1.0071 45.80 3.568 .2893 15.7 537.3 553.0 482.2 498.5 0.0377 1.0046 46.41 3.527 .2835 16.4 536.6 553.0 482.2 498.6 0.0317 1.0046 47.02 3.485 .2808 17.2 535.3 480.9 498.7 0.0345 1.0572 47.03 3.446 0.2902 17.0 535.3 480.9 498.8 0.0359 1.0547 48.23 3.407 2.097 10.2 533.4 553.4 479.6 498.8 0.0359 1.0499 49.39 3.350 2.00	2	43.28	3.740	.2674	12.0	539.7	552.6	485.5	408.4	.0260	1.0723	1.0984
44.54 3.653 0.2737 14.3 538.5 552.8 484.2 498.5 0.0289 1.0671 45.17 3.610 .2770 15.0 537.9 552.9 483.5 498.5 .0303 1.0646 45.80 3.568 .2863 15.7 537.3 553.0 482.9 498.6 .0317 1.0646 46.41 3.527 .2835 16.4 536.6 553.0 482.2 498.6 .0317 1.0541 47.02 3.485 .2868 17.2 535.9 553.1 481.5 498.7 .0345 1.0572 47.03 3.446 0.2902 17.2 535.3 480.9 498.8 .0359 1.0547 48.23 3.407 .2967 19.2 534.2 479.6 499.0 .0385 1.0499 49.39 3.350 .2007 532.8 553.5 479.0 499.0 .0398 1.0402 49.97 3.300 .207 532.8 553.5	&	43.88	3.696	3706	13.6	539.1	552.7	484.8	498.4	.0275	1.0706	1.0972
45.17 3.610 -2770 15.0 537.9 552.9 483.5 498.5 -0303 1.0646 45.80 3.568 -2803 15.7 537.3 553.0 482.9 498.6 -0317 1.0641 46.41 3.527 -2835 16.4 535.0 482.2 498.6 -0317 1.0596 47.02 3.485 -2808 17.2 535.0 480.5 498.7 -0345 1.0596 47.03 3.446 0.2902 17.0 535.3 480.9 498.8 0.0359 1.0547 48.3 3.3407 -2935 18.5 533.3 480.3 490.0 -0359 1.0499 49.39 3.370 -2997 20.0 533.5 479.0 499.0 -0398 1.0499 49.97 3.300 20.7 532.8 553.5 478.4 499.1 1.0462	81	44.54	3.653	0.2737	14.3	538.5	552.8	484.2	498.5	0.0289	1.0671	1,0961
45.86 3.568 .2863 15.7 537.3 553.0 482.9 498.6 .0317 1.0621 46.41 3.527 .2835 16.4 536.6 553.0 482.2 498.6 .0317 1.0521 47.02 3.485 .2868 17.2 535.9 553.1 481.5 498.7 .0345 1.0596 47.03 3.446 0.2902 17.9 535.3 480.9 498.8 0.0359 1.0572 48.23 3.407 .2967 19.2 534.2 450.3 490.0 .0385 1.0499 49.39 3.350 .200 533.5 553.5 479.0 499.0 .0385 1.0499 49.97 3.300 .20.7 532.8 553.5 479.0 499.0 .0411 1.0462	82	45.17	3.610	.2770	15.0	537.0	552.0	483.5	408.5	.0303	1.0646	1.0050
46.41 3.527 .2835 16.4 536.6 553.0 482.2 498.6 .0331 1.0596 47.02 3.485 .2868 17.2 535.9 553.1 481.5 498.7 .0345 1.0572 47.63 3.446 0.2902 17.9 535.3 480.9 498.8 0.0359 1.0547 48.23 3.407 .2967 16.2 534.2 553.3 480.9 498.8 0.0359 1.0523 48.82 3.370 .2967 10.2 534.2 553.4 479.6 499.0 0.385 1.0475 49.97 3.300 .207 532.8 553.5 479.0 499.0 1.0462	83	45.80	3.568	.2803	15.7	537.3	553.0	482.0	498.6	.0317	1.0621	1.0049
47.02 3.485 .2868 17.2 535.9 553.1 481.5 498.7 .0345 1.0572 47.63 3.446 0.2902 17.9 535.3 480.9 498.8 0.0359 1.0547 48.23 3.407 .2935 18.5 533.3 480.3 498.8 0.0359 1.0547 48.23 3.370 .2907 19.2 534.2 553.4 479.0 .0385 1.0499 49.39 3.330 .20.0 533.5 553.5 479.0 499.0 .0398 1.0475 49.97 3.300 .20.7 532.8 553.5 478.4 499.1 .0411 1.0462	*\$	46.41	3.527	.2835	16.4	536.6	553.0	482.2	498.6	.0331	1.0596	1.0028
47.63 3.446 0.2902 17.9 535.3 480.9 498.8 0.0359 1.0547 48.23 3.407 -2935 18.5 534.8 553.3 480.9 498.8 -0372 1.0523 48.82 3.370 -2937 19.2 534.2 553.4 479.8 499.0 -0385 1.0459 49.39 3.330 -20.7 533.5 553.5 479.0 499.0 -0398 1.0475 49.97 3.300 -30.7 532.8 553.5 478.4 499.1 -0411 1.0462	85	47.02	3.485	.2808	17.2	535.9	553.1	481.5	498.7	.0345	1.0572	1.00.1
47.03 3.440 0.2002 17.9 535.3 480.9 496.8 0.0359 1.0547 48.23 3.440 -2935 18.5 534.8 553.3 480.3 496.8 1.0523 48.23 3.370 -2957 19.2 534.2 553.4 479.0 -0385 1.0459 49.39 3.330 20.0 533.5 479.0 499.1 1.0462 49.97 3.300 -20.7 532.8 553.5 478.4 499.1 1.0462	č		,					d	6			,
48.23 3.407 .2935 18.5 534.8 553.3 480.3 496.8 .0372 1.0523 48.82 3.370 .2907 19.2 534.2 553.4 479.8 499.0 .0385 1.0499 49.39 3.335 .2999 20.0 533.5 479.0 499.0 .0398 1.0475 49.97 3.300 20.7 532.8 553.5 478.4 499.1 1.0462	8	47.03	3.440	0.2002	17.9	535.3	553.2	480.9	498.8	0.0359	1.0547	0000
48.82 3.370 .2907 19.2 534.2 553.4 479.8 499.0 .0385 1.0499 49.39 3.335 .2999 20.0 533.5 553.5 479.0 499.0 .0398 1.0475 49.97 3.300 .3030 20.7 532.8 553.5 478.4 499.1 .0411 1.0462	22	48.23	3.407	.2935	18.5	534.8	553.3	480.3	498.8	.0372	1.0523	1.0895
49.39 3.335 .2999 20.0 533.5 553.5 479.0 499.0 .0398 1.0475 49.97 3.300 .3030 20.7 532.8 553.5 478.4 499.1 .0411 1.0462	88	48.82	3.370	2062	19.2	534.2	553.4	479.8	499.0	.0385	1.0499	1.0884
49.97 3.300 .3030 20.7 532.8 553.5 478.4 499.1 .0411 1.0462	8	49.39	3.335	. 2000	20.0	533.5	553.5	479.0	499.0	.0398	1.0475	1.0873
	8	49.97	3.300	.3030	20.7	532.8	553.5	478.4	499.I	.0411	1.0462	1.0863

PRESSURE TABLE. -- Continued

Pressure,	Temp.	Sp. vol.,	Density, 1b.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
<u>.</u>	4	cu. it. per ib.	per cu. it.	pindni jo	Dinbtr 10	or value	Evap.	Vapor	Liquid	Evap.	Vapor
•	•	i.	#I p	ő	н	ő	U,	ū	-6	IJĦ	i d
						,					,
16	50.55	3.265	0.3063	21.4	532.2	553.0	477.7	499.1	0.0424	1.0429	1.0853
92	51.13	3.231	.3095	21.9	531.8	553.7	477.3	400.3	.0437	1.0400	1.0843
83	51.70	3.199	.3126	22.6	531.2	553.8	476.6	400.3	.0450	1.0383	1.0833
\$	52.27	3.166	.3159	23.3	530.5	553.8	476.0	499.3	.0463	1.0361	1.0823
95	52.83	3.134	.3191	23.9	530.0	553.9	475.5	499.4	.0476	1.0339	1.0813
ý		,		,	7 002		0,11,	7007	800	1 0217	1 0803
2.5	95.59	3.102	0.3223	24.5	4.00.0	253.9	4/4.9	4.004	, c. c.	1.031/	1.000
5%	35.55	3.070	.3257	25.3	2.00.7	0.45.0	4/4.4	2.004 2.004 2.004	.030	1.0293	1.0/04
3.8	94.50 00.4	3.030	.3201	2,50	2.02.	3.450	473.0	2.00	25.5	2001	92201
3.8	55.58	2.080	.3323	20.4 27.1	527.0	554.1	472.4	499.5	.0537	1.0232	1.0767
	•	`	}								
IoI	56.10	2.952	0.3388	27.6	526.6	554.2	471.9	499.5	0.0549	1.0210	1.0758
102	56.62	2.924	.3420	28.2	526.0	554.2	471.4	499.6	.0501	1.0189	1.0749
103	57.13	2.897	.3452	28.8	525.5	554.3	470.8	499.6	.0573	1.0168	1.0740
ş	57.63	2.870	.3484	29.4	525.0	554.4	1.04	499.7	.0584	1.0147	1.0731
105	58.14	2.844	.3516	30.0	524.4	554.4	469.7	499.7	.0596	1.0126	1.0722
901	58.65	2.817	0.3540	30.6	523.0	554.5	460.2	400.8	0.0607	1.0105	1.0713
107	59.15	2.791	.3583	31.1	523.4	554.5	468.7	499.8	8190.	1.0085	1.0704
108	29.66	2.765	.3617	31.8	522.8	554.6	468.I	499.9	.0629	1.0065	1.0695
100 001	91.09	2.740	.3650	32.4	522.2	554.6	467.5	499.9	.0640	1.0045	1.0686
011	60.67	2.716	.3682	33.0	521.7	554.7	466.9	499.9	.0651	1.0028	1.0677
111	61.18	2.602	0.4715	33.5	521.2	554.7	466.4	400.0	0.0662	1.0006	1.0669
112	61.68	2.660	.3747	34.1	520.7	554.8	465.8	400.0	.0673	.9985	1.0660
113	62.19	2.646	.3770	34.7	520.1	554.8	465.3	500.0	.0684	.9965	1.0649
114	62.69	2.624	.3811	35.3	519.5	554.8	464.7	200.0	\$690.	.9945	1.0640
115	63.19	2.602	.3843	35.8	519.1	554.9	464.2	500.0	90/0.	.9926	1.0632
911	63.61	2,580	2876	26.3	618.6	664.0	462.7	0000	0.0717	9000	1.0624
117	71 79		900	8 %	1813	2 7 2 2	762.2	2	07.28	80	1 0616
7		2000	965	2.5	210.1	7.4.0	5.55	3 8	× × × ×	2,2%	80,00
011	94.39	2.530	3940	4.75	517.0	0.666	402.7	3,8	27.50	2/80	3
611		/10.7	5765	5.70	3.7.5	222.0			2 2 2	1000	200
720	05:40	7.407	2004:	20.0	0.015	1.50	401.7	500.5	0.	1400.	1.0502

Pressure, lb.	Temp., F.	Sp. vol cu. ft. per lb.	Density, lb.	Heat content	Latent heat	Heat content	Internal er	Internal energy, B.t.u.		Entropy	
P.		i i	$\frac{1}{V_1}$	đ	1	Ö	Evap. U.	Vapor U ₁	Liquid	Evap. L	Vapor •1
121	65.04	2.477	0.4037	30.0	1 912	1 1 1	161.9	ç	8920	8180	850
122	66.41	2.457	4070	20.5	2010	1.000	260 8	2 2	% 7.00	250	1.0303
123	66.8¢	2.437	4102		2000	222	, 66.		96.0	3	7750-1
124	67.33	2.418	92.17		2.5.5	255.1	4.004	4.36	8,0	79/6:	1.05/0
22	67. ST	2	25.	?;	514.0	555.I	459.9	500.4	9,00	.9705	1.0503
6,1	10.70	34:	7014.	41.1	514.1	555.2	429.4	500.5	808	.9747	1.0555
126	68.27	2.282	8017	;		1	0		0.00		
127	7.89	2,362	2,410	7.14	513.5	555.2	450.0	500.5	0.0010	0.9729	1.0547
128		2350	1366	7 0	513.1	555.31.	450.4	200.0	0020	11/6.	1.0539
2 2	· •	240.	2024	42.0	512.5	555-3	457.0	200.0	88.0	.9093	1.0531
	5	1.34/	/624-	43.3	512.0	555-3	457.3	200.0	.0848	.9070	1.0524
S	70.1	2.300	.4330	43.9	511.4	555-3	456.8	500.7	.0858	6596.	1.0517
131	70.5	2.292	0.4363	44.3	Z11.1	4.000	4.66.4	700.7	0.0868	0.0642	1.0510
132	70.9	2.275	4306	8.4	\$10.6	555.4	455.0	200.7	8780.	.0625	1.0502
133	71.3	2.259	.4427	45.2	510.2	555.4	455.5	200.7	.0887	,0,0 80%	1.0405
134	71.7	2.243	.4458	45.7	500.7	555.4	455.1	80.8	,080.	1050.	1.0487
135	72.2	2.227	.4490	46.3	500.2	555.5	454.5	500.8	.0005	.9575	1.0480
136	72.6	2.201	0.4543	8.98	7 803	u u	0 737	8	7100	0	1
137	73.0	2.106	4554	47.2	28.3	0.000	424.0	2 6	200	V. V. V.	2,5
138	73.4	2.180	.4587	47.7	207.00	233.3	453.0	800	500	.9343	
139	73.8	2.164	.4621	48.2	4 703	2000	452.7		170	0510	25.5
140	74.2	2.149	.4653	48.7	\$06.9	555.6	452.2	500.0	0000	.9497	1.0444
141	74.7	2.134	0.4686	40.2	7 902	9 22 2	7 14 4	ç	0	. 85.40	1.56.17
142	75.1	2.110	4710	907	1 902	3333	1.171		8990	2/4/2	25.5
143	75.5	2.105	4751	20.1	200	333.0	8 027	501.0	2200	2443	
4	75.0	2.000	4784	20.6	203.3	233.1	450.5	0.102	2800		8170
145	76.3	2.076	.4817	21.1	7.70	555.7	440.0	0.107	2000	7170	1.0412
٠,	,			•	,			,		<u>;</u>	
140	16.7	2.063	0.4847	\$1.6	504.2	555.8	449.4	501.0	90.1004	0.0402	1.0406
147	77.1	2.040	-4880	52.0	503.8	555.8	449.0	501.0	.1013	.9387	1.0400
148 	77.5	2.035	-4914	52.5	503.3	555.8	448.6	501.1	.1022	.9372	1.0394
140	77.9	2.021	4948	53.0	502.9	555.9	448.1	501.1	.1030	.9357	1.0387
02	78.3	2.80	4080	K2.4	2 002	0 222	4477	100		23.25	

Continued
Ī
E.
AB]
TA
RE
SSU
RES
Ā

																	•																		
	Vapor	4		1.0374	1.0367	1.0361	1.0355	1.0348		1.0342	1.0330	1.0330	1.0324	1.0318	1.0312	1.0306	1.0300	1.0294	1.0288	1.0283	1.0277	1.0271	1.0265	1.0259	1.0253	1.0248	1.0243	1.0237	1.0231	,	1.0226	1.0220	1.0215	1.0209	1.0204
Entropy	Evap.	JIE		0.0320	.9311	.9296	.9281	.9266		0.9252	.9230	.9224	.9210	6616.	0.0182	8916.	.9154	.9140	.9126	0.9113	6606.	.9085	1,00.	.9062	0.9045	.0032	9000.	9006	.8992		0.8079	.8965	.8952	.8939	.8920
	Liquid	4	,	0.1048	.1056	.1065	4. IO74	.1082		0.100	901.	0011.	1114	.1122	0.1130	.1138	1146	.1154	.1162	0.1170	.1178	9811.	1194	.1201	0.1208	.1216	.1224	.1231	.1239		0.1247	.1255	.1263	.1270	.1277
argy, B.t.u.	Vapor	u,		501.1	501.1	501.2	501.2	501.2		501.2	501.3	501.3	501.3	501.3	501.3	501.4	501.4	501.4	501.4	501.4	501.4	501.4	501.4	501.5	501.5	501.5	501.5	501.5	501.5)	501.5	501.5	501.5	901.0	501.6
Internal energy, B.t.u.	Evap.	ď		447.3	446.8	446.4	446.0	445.5	1	445.1	7.44	44 53	443.9	443.5	443.0	442.6	442.2	441.8	441.3	440.0	440.5	440.I	430.7	439.3	438.8	4.38.4	438.0	437.6	437.2	<u> </u>	436.8	436.4	436.0	435.6	435.3
Heat content		ő		555.9	555.9	556.0	556.0	556.0	,	550.0	550.1	550.I	550.I	556.1	556.2	556.2	556.2	556.2	556.3	556.3	556.3	556.3	556.4	556.4	556.4	556.4	556.4	\$56.4	556.4	3	556.5	556.5	556.5	556.5	5.56.5
Latent heat		ı	-	502.1	501.6	501.2	200'8	500.3		499.0	499.5	1.664	498.7	498.3	407.0	407.4	407.0	406.6	496.2	405.8	495.4	405.0	404.6	494.2	403.7	403.3	402.0	402.5	402.1	`	491.8	401.4	491.0	400.6	400.2
Heat content		ő	,	53.8	54.3	8.4.8	55.2	55.7	7	50.I	20.0	27.0	57.4	57.8	28.3	, w	20.5	20.0	60.1	60.5	6.09	61.3	61.7	62.2	62.7	64.1	63.5	63.0	64.3	<u>.</u>	64.7	65.1	65.5	62.0	96.3
Density, 1b.		HIE		0.5013	.5045	.5079	.5110	.5144	1	0.5179	.5211	.5244	.5277	.5305	0.5330	.5373	8083	.5441	.5470	0.5504	.5537	.5568	.5599	.5631	0.5663	\$605.	.5727	.5760	5704	;	0.5828	.5862	.5896	. 5928	.5963
Sp. vol.,		ı,		1.995	1.982	1.969	1.957	1.944		1.931	016.1	1.907	1.895	1.885	1.873	1.861	1.840	1.838	1.828	1.817	1.806	962.1	1.786	1.776	1.766	1.756	1.746	1.736	1.726	•	1.716	1.706	1.696	1.687	1.677
Temp.		•		78.7	1.62	79.4	۰ 79.8	80.2	7 0	0.0	0.10	o1.3	81.7	82.1	82.5	82.0	83.3	83.7	84.0	84.4	84.8	85.1	85.4	85-8	86.2	86.5	86.0	87.2	87.6	. ,	6.79	88.3	9.88	80.0	80.3
Pressure,		•		151	152	153	, 154	155	4	150	157	150	159	8	191	162	163	164	165	991	167	891	691	170	171	172	173	174	175	: '	176	177	178	179	& &

PRESSURE TABLE. -- Continued

181 183 183 184 184	\$ 5.7 \$9.7	cu. it. per 10.									
	\$ 89.7		per cu. 11.	ombir io	pinbii 10	or vapor	Evap.	Vapor	Liquid	Evap.	Vapor
	89.7	<u>.</u>	HIF	ő	ы	ő	å	, p	· &	HIE	4
	, o. 80.0 80.0	. 669	100	, yy	8 68,	;		7 25	, 80, 0	1,000	00.0
	3	1.000	0.5993	7.29	0.00	550.5	435.9	501.0	0.1204	9.0014	0.0.0
		1.059	0000	1.70	400.4	550.5	434.5	501.0	1621.	.000	1.0193
	8 4	1.050	1000.	07.5	489.0	550.5	434.1	501.0	.1298	6888	1.0187
	8.7	1.641	2006.	62.0	488.0	556.5	433.7	501.6	.1205	.8877	1.0182
_	0.16	1.633	.6124	68.3	488.2	556.5	433.3	901.0	.1312	.8865	1.0177
	91.4	1.624	0.6158	68.7	487.8	556.5	433.0	501.7	0.1310	0.8852	1.0171
	01.7	1.615	.6102	1.09	487.4	5.66.5	432.6	501.7	.1327	.8830	1.0166
	0.00	900	6227	, ,	287	2 42	4333	. 105	1227	8827	10101
	7 20	1 100	72-0		2.787	2000	2 10 10 10 10 10 10 10 10 10 10 10 10 10	7	13.51	881	10101
	4:40	1.00	2020.	٠ ج	0.00	250.5	431.0	7.100	1401.	400	25.15.2
_	92.7	1.589	.0293	70.3	400.2	550.5	431.4	501.7	.1348	\$000	1.0149
	03.0	1.581	0.6325	70.7	485.0	556.6	431.0	501.7	0.1354	0.8780	1.0143
	03.4	1.573	.6357	71.1	485.5	9.925	430.6	501.7	1361	.8777	1.0138
	03.7	1.565	.6390	71.5	485.1	\$56.6	430.2	501.7	.1368	.8765	1.0133
	04.0	1.557	.6423	71.0	484.7	\$56.6	420.8	501.7	.1374	.8753	1.0127
	94.3	1.549	.6456	72.3	484.3	556.6	429.4	501.7	.1381	.8741	1.0122
	04.6	1.541	0.6480	72.7	483.0	9 923	0.00	7 103	0.1288	0.8720	1.0117
_	2	1 522	6639	100	180	2000	9 80	201.7	1306	27.00	71101
	, c	200.1	5,55		26.5.3	230.0	2000	707	100	92/0	100
		22.7	7029		1.00	230.0	2000	20.00	100	3,0	7010.1
_	3.5	/+6-+	*A660.	2:5/	0.10	220.0	4.0.0	301.0	244	1	70101
	95.9	1.510	.0023	74.1	482.5	550.0	427.7	501.8	.1414	.8085	1.0007
	96.5	1.495	0.6689	74.9	481.7	556.6	426.9	501.8	.1428	0.8659	1.0087
-	1.76	1.480	.6757	75.6	0.184	256.6	426.2	801.8	.1441	.8636	1.0077
	8.76	1.466	1289.	76.3	480.3	556.6	425.5	801.8	1454	.8613	1,0067
	98.4	1.452	7889.	77.0	479.6	556.6	424.8	801.8	.1467	1658.	1.0058
	99.0	1.438	.6954	77.7	478.8	556.5	424.I	801.8	.1479	.8569	1.0048

PRESSURE TABLE. -- Continued

Pressure,	Temp.,	Sp. vol	Density, lb.	Heat content	Latent heat	Heat content	Internal er	Internal energy, B.t.u.		Entropy	
	:						Evap.	Vapor	Liquid	Evap.	Vapor
A	-	i d	H A	ð	ы	ő	ū,	ď	4	J IF	ě
212	9.66	1.424	0.7022	78.4	478.1	556.5	423.4	5or.8	0.1492	0.8547	1.0039
214	100.2	1.410	.7007	1.62	477.4	556.5	422.7	So1.8	.1505	.8525	1.0030
216	100.8	1.397	.7158	79.8	476.7	556.5	422.0	801.8	.1517	.8504	1.0021
218	4.101	1.384	.7225	80.5	476.0	556.5	421.3	So1.8	.1529	.8483	1.0012
220	102.0	1.371	.7294	81.2	475.3	556.5	420.6	So1.8	.1541	.8462	1.0003
222	102.6	1.358	0.7364	81.9	474.6	556.5	419.9	501.8	0.1554	0.8440	0.0004
224	103.2	1.346	.7429	82.6	473.9	556.5	419.2	801.8	9921.	.8410	.9985
226	103.7	1.334	.7496	83.3	473.2	556.5	418.5	501.8	.1578	.8398	9266.
228	104.3	1.323	.7559	84.0	472.5	556.5	417.8	501.8	.1590	.8377	.9967
230	104.9	1.312	.7622	84.6	471.8	556.4	417.2	501.8	.1602	.8357	.9959
232	105.5	1,300	0.7602	85.3	471.1	556.4	416.5	501.8	0.1614	0.8336	0.0050
234	106.0	1.289	.7758	85.0	470.5	556.4	415.0	801.8	9291.	8316	242
236	9.901	1.278	.7825	9.98	469.8	556.4	415.2	501.8	.1637	.8296	.9933
238	107.2	1.267	.7893	87.2	469.1	556.3	414.6	So1.8	.1649	8276	.9925
240	1.701	1.256	-7962	6.78	468.4	556.3	413.9	501.8	9991.	.8256	9166.
242	108.2	1.245	0.8032	88.5	467.7	556.2	413.2	501.7	0.1672	0.8236	0.0008
244	108.8	1.234	.810 4	89.2	467.0	556.2	412.5	501.7	.1683	.8216	6080.
246	100.3	1.224	.8170	8. 80. 80.	466.3	556.1	411.9	501.7	. 1695	9618.	<u>1</u> 683.
248	100.0	1.214	.8237	90.5	465.6	556.1	411.2	501.7	90/1:	9218.	.9882
250	110.4	1.204	.8306	1.16	464.9	556.0	410.6	501.7	.1717	.8157	-9874
252	0.111	1.195	0.8368	61.7	464.3	556.0	410.0	501.7	0.1728	0.8138	0.9866
254	111.5	1.185	.8439	92.3	463.7	555.0	4004	501.7	.1739	6118.	.9858
256	112.0	1.176	.8503	92.9	463.0	555.9	408.8	501.7	.1750	.8100	.9850
258	112.5	1.167	.8569	93.6	462.3	555.9	408.1	501.7	19/11.	1808.	.9842
80	113.1	1.158	.8636	\$	401.7	555.0	407.5	501.7	1771.	.8063 .8063	-0834

PRESSURE TABLE. — Continued

Pressure, 1b.	Temp.	Sp. vol., cu. ft. per lb.	Density, 1b.	Heat content	Latent beat	Heat content	Internal et	Internal energy, B.t.u.		Entropy	
							Evap.	Vapor	Liquid	Evap.	Vapor
a	-	ı,	# p	ő	ı	ō	ű,	ď	4	1 H	4
292	113.6	1.149	0.8703	8	461.0	848.8	406.0	401.7	0.1782	0.8044	0.0826
264	114.1	1.140	.8772	95.4	400.4	555.8	406.2	501.6	.1702	.8026	.0818
566	114.6	1.131	.8842	0.96	459.7	555.7	405.6	Sor.6	.1803	.8007	0180.
208	115.1	1.122	.8913	9.96	459.I	555.7	405.0	3o1.6	.1813	.7989	.9802
270	115.6	1.113	.8985	97.2	458.5	555.7	404.4	501.6	.1824	.7971	.9795
272	1.16.1	1.104	0.9058	8.76	457.8	555.6	403.8	501.6	0.1834	0.7953	0.0787
274	116.6	1.096	.9124	98.4	457.2	555.6	403.I	501.5	.1845	.7935	.9780
276	117.1	1.088	1616.	0.66	456.5	555.5	402.5	501.5	.1855	7167.	-9772
278	9. <u>Ž</u> 11	980.1	.9259	9.66	455.9	555.5	401.9	501.5	9981.	.7899	.9765
8	118.1	1.072	.9328	100.2	455.3	555.5	401.2	501.4	9281.	.788	.9757
282	118.6	1.064	0.0308	100.8	454.6	555.4	400.6	501.4	0.1887	0.7863	0.0750
284	1.611	1.056	.9470	101.3	454.0	555.3	400.0	501.3	.1897	.7846	.0743
200	119.5	1.049	.9533	6.101	453.4	555.3	399.4	501.3	9061.	.7829	.9735
288	120.0	1.043	9096.	102.4	452.9	555.3	308.8	501.2	9161.	.7812	.0728
 %	120.5	1.034	1296.	103.0	452.2	555.2	398.2	501.2	.1926	.7795	.9721
202	121.0	1.026	0.9747	103.6	451.6	555.2	307.6	501.2	0.1936	0.7778	0.0714
\$,	121.4	1.019	.9814	104.1	451.0	555.1	397.1	501.2	1946	1922.	7076.
200	121.9	1.012	1880.	104.7	450.4	555.1	396.5	501.2	9261.	.7744	.9700
38	122.4	1.005	.9950	105.3	440.8	555.1	305.0	501.2	9961.	.7727	.0603
38	122.9	90.00	1.002	105.9	449.3	555.0	395.3	501.2	9261.	0177.	· .9686
310	125.2	0.965	1.036	108.6	446.2	554.8	392.5	501.1	0.2023	0.7626	0.0640
330	127.4	.932	1.073	111.3	443.2	554.5	389.6	500.0	.2060	.7545	4196.
330	129.6	ģ	1.106	1.4.1	440.3	554.4	386.8	500.0	.2115	.7468	.9583
2 6	131.8	928.	1.142	116.7	437.4	554.1	384.1	200.8	0312.	.7390	.9550
330	133.0	.840	1.178	110.2	9 767	× 222	281.4	900	2000	7216	0510

PRESSURE TABLE - Concluded

юру	vap. Vapor	TIL.	.7244 0.9489					.6908 0.9349				657 .9244	0.6598 0.9220				368 .9127	0.6232 0.9070		_		724 0.8865		.5489 .8772	
Entropy	Liquid	Į.	0.2245 0.7									. 2587 6	_				.0. 6275.	0.2838 0.6						.3283 .5	
rgy, B.t.u.	Vapor	U,	\$00.4	200.3	500.0	499.8	499.6	499.4	1.664	498.9	498.7	498.5	498.2	408.0	497.7	407.4	1.764	496.5	495.9	495.3	494.7	404.2	403.7	493.2	
Internal energy, B.t.u.	Evap.	ď,	378.8	376.1	373.5	371.0	368.5	365.9	363.4	361.0	358.6	356.3	354.0	351.7	349.3	347.0	344.6	339.0	333.5	328.1	322.8	317.6	312.4	307.3	
Heat content	5.	ő	553.4	553.1	552.8	552.4	552.0	551.7	551.3	550.0	550.5	550.1	549.6	549.2	548.8	548.3	547.9	546.7	545.6	544.5	543.4	542.3	541.2	540.1	
Latent heat	nii bii bi	1	431.8	420.0	426.3	423.6	420.9	418.2	415.6	413.0	410.4	407.9	405.4	402.0	400.4	397.9	395.4	389.2	383.2	377.3	371.5	365.7	350.0	354.2	70,0
Heat content	מייים	ő	121.6	124.1	126.5	128.8	131.1	133.5	135.7	137.9	140.1	142.2	144.2	146.3	148.4	150.4	152.5	157.5	162.4	167.2	171.9	176.6	181.3	185.9	
Density, 1b.	per cur it.	HIĞ	1.214	1.250	1.287	1.323	1.359	1.395	1.433	1.471	1.511	1.548	1.585	1.621	1.658	1.698	1.736	1.835	1.934	2.033	2.141	2.237	2.342	2.451	01.
Sp. vol.,	ca. it. per io.	41	0.824	&. &.	.777	.756	.736	0.717	869.	% 9.	.662	.646	0.631	. 219.	.603	.589	.576	0.545	.517	.492	.467	0.447	.427	804.	.00
Temp.	4	•	135.9	137.9	139.9	141.8	143.7	145.6	147.4	149.2	151.0	152.7	154.4	156.1	157.8	159.4	6.091	164.8	168.6	172.3	175.8	170.2	182.5	185.7	0 00
Pressure,	ġ	a	360	370	380	300	8	410	420	430	94	450	8	470	80	84	200	525	550	575	8	625	650	675	

_
ز۔
૪
ス
•
J
•
<u>l</u> -
(
Ω

			-	SUPERHE	ATED AN	AMONIA (SUPERHEATED AMMONIA (Nos. 5 to 12)	1				
Liquid Vapor 10°	Vapor	10.		°0°	30.	•0	20	°09	20.	&	8	001
Temp. —62.13 —4.53.5 53.5 53.5 53.	-62.13 -52.13 -4 106.2 527.5 532.5 53 0.02260 49.72 50.996 5 .2407 1.3533 1.3658	5.88.25 5.88.25	4 8 8	-42.13 537.4 52.271 1.3775	-32.13 542.4 53.545 1.3893	-22.13 547.3 54.818 1.4008	-12.13 552.3 56.090 1.4121	- 2.13 557.3 57.361 1.4232	+ 7.87 \$62.4 \$8.627 1.4339	+17.87 567.4 59.729 1.4443	+27.87 572.5 61.169 1.4551	+37.87 577.5 62.436 1.4653
Temp56.84 -46.84 -55.84 0.00.4 234.0 534.0 534.0 534.0 6.00.273 41.79 42.783 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100.4 526.84 -46.84 -3 100.4 529.0 534.0 53 0.02273 41.79 42.783 4 .2261 1.3525 43.23 4	25 S S S S S S S S S S S S S S S S S S S	£ 52 4	-36.84 539.0 43.772 1.3643	-26.84 543.9 44.758 1.3760	-16.84 548.9 45.740 1.3874	- 6.84 553.9 46.859 1.3985	+ 3.16 558.9 47.696 1.4096	+13.16 563.9 48.670 1.4204	+26.16 569.0 49.642 1.4309	+36.16 574.0 50.522 1.4415	+46.16 579.0 51.580 1.4518
Temp53.23 -42.23 -42.23 -3 Q - 95.3 536.3 535.3 54 Vol. 0.02286 36.23 37.148 3 \$\phi\$2135 1.3270 1.3395	95.3 530.3 535.3 0.02286 36.23 37.148 1.3270 1.3395	_ <u>`</u>		-32.23 540.3 38.002 1.3512	-22.23 545.3 38.931 1.3629	-12.23 550.3 39.847 1.3742	- 2.23 555.3 40.780 1.3854	+ 7.77 560.3 41.700 1.3965	+17.77 565.3 42.618 1.4072	+27.77 570.4 43.533 1.4178	+37.77 575.4 44.447 1.4283	+47.77 580.4 45.359 1.4387
Temp48.13 -38.13 -28 Q -536.4 536.4 546.4 Vol. 0.02298 32.05 32.590 33.09 \$\phi\$2022 1.3143 1.3267	-48.13 -38.13 - 298 32.05 32.590 22 1.3143 1.3267	- 8 ⁶	1 2 E.	-28.13 541.4 33.432 1.3384	-18.13 546.4 34.273 1.3502	- 8.13 551.4 35.112 1.3614	+ 1.87 556.4 35.950 1.3726	+11.87 561.4 36.787 1.3837	+21.87 566.4 37.623 1.3943	+31.87 571.5 38.455 1.4050	+41.87 576.5 39.251 1.4155	+51.87 581.5 40.046 1.4258
Temp. -44.40 -34.40 -34.40 -24 Q - 86.5 532.6 537.6 547.6 Vol. 0.02308 28.75 29.131 29 Φ 1919 1.3026 1.3150 1	86.5 532.6 537.6 0.02308 28.75 29.131 1.3150	50	1 2 4 2 1 1 2 4 4 4 1 1 1 1 1 1 1 1 1 1	-24.40 542.6 29.872 1.3266	-14.40 547.7 30.610 1.3385	- 4.40 552.7 31.349	+ 5.60 557.7 32.081 1.3608	+15.60 562.7 32.814 1.3718	+25.60 567.7 33.545 1.3826	+35.60 572.7 34.276 1.3931	+45.60 577.8 35.005 1.4036	+55.60 582.8 35.733 1.4139
Temp 40.91 - 30.91 - 20 Q - 82.9 533.8 538.8 543 Vol. 0.02318 26.05 26.647 27 \$\phi\$1826 1.2919 1.3042 1	-40.91 533.8 318 26.05 26.647 1.3042	-	- 20 543 27 1	-20.91 543.8 27.293 1.3159	-10.91 548.9 27.950 1.3277	- 0.91 553.9 28.581 1.3389	+ 9.19 \$58.9 29.210 1.3500	+19.19 563.9 29.199	+29.19 569.0 30.467 1.3719	+39.19 574.0 31.094 1.3822	+49.19 579.1 31.719 1.3928	+59.19 584.1 32.343 1.4030.
Temp79.3 534.8 539.8 54.4 54.416 2.1.78 -1.2949	79.3	1 %	1 7 2	-17.76 544.8 25.012 1.3067	- 7.76 549.9 25.597 1.3184	+ 2.24 554.9 · 26.181 1.3297	+12.24 559.9 26.764 1.3407	+22.24 564.9 27.307 1.3517.	+32.24 570.0 27.927 1.3626	+42.24 575.0 28.507 1.3729	+52.24 580.1 29.086 1.3835	+62.24 585.1 29.664 1.3937
Temp34.83 -24.83 -1. Q -76.0 535.8 538.8 54. Vol. 0.02333 21.99 22.53 2 φ1665 .1.2742 1.2865	-34.83 -24.83 -1 535.8 538.8 54 333 21.99 22.53 2 65 11.2742 1.2865		1 2 4	-14.83 545.8 23.06 1.2982	- 4.83 550.9 23.60 1.3097	+ 5.17 555.9 24.13 1.3212	+15.17 560.9 24.67 1.3322	+25.17 566.0 25.30 1.3431	+35.17 571.0 25.73 1.3540	+45.17 576.1 26.27 1.3643	+55.17 581.1 26.80 1.3747	+65.17 586.2 27.33 1.3850

300	+237.87	+246.16	+247.77	+251.87	+255.60	+259.19	+262.24	+265.17
	679.6	681.2	682.7	683.9	685.3	686.7	687.8	688.9
	87.730	73.59	63.53	55.90	50.0	45.231	41.220	38.02
	1.6379	1.6241	1.6108	1.5977	1.5856	1.5747	1.5651	1.5562
	+	+	<u> </u>	+		+	+ 68 4	
250°	+187.87	+196.16	+197.77	+201.87	+205.60	+209.19	+212.24	+215.17
	653.8	655.4	656.8	658.0	659.4	660.7	661.8	662.9
	81.402	67.866	58.993	51.908	46.398	42.015	38.388	35.35
	1.5996	1.5860	1.5728	1.5596	1.5476	1.5367	1.5271	1.5182
200	+137.87	+146.16	+147.77	+151.87	+155.60	+159.19	+162.24	+165.17
	628.2	629.8	631.2	632.4	633.7	635.0	636.1	637.2
	75.064	62.138	54.449	48.012	42.893	38.929	35.524	32.67
	1.5585	1.5450	1.5318	1.5187	1.5066	1.4958	1.4862	1.4774
180	+117.87	+126.16	+127.77	+131.87	+135.60	+139.19	+142.24	+145.17
	618.04	619.6	621.0	622.2	623.5	624.8	625.9	627.0
	72.526	59.844	52.642	46.413	41.449	37.693	34.376	31.60
	1.5410	1.5274	1.5141	1.5011	1.4891	1.4782	, 1.4687	1.4600
.091	+ 97.87 607.9 69.987 1.5233	+106.16 609.4 57.549 1.5098	+107.77 610.8 50.811 1.4963	+111.87 612.0 44.812 1.4833	+115.60 613.2 40.055 1.4714	+119.19 614.5 36.455 1.4604	+122.24 615.6 33.233 1.4509	+125.17 616.7 30.53
150	+ 87.87	+ 96.16	+ 97.77	+101.87	+105.60	+109.19	+112.24	+115.17
	602.8	604.8	605.7	606.9	608.1	609.4	610.5	611.6
	68.764	56.400	49.900	44.01	39.281	35.560	32.541	29.99
	1.5138	1.5002	1.4870	1.4741	1.4622	1.4513	1.4417	1.4324
140	+ 77.87	+ 86.16	+ 87.77	+ 91.87	+ 95.60	+ 99.19	+102.24	+105.17
	597.7	599.2	600.6	601.8	603.0	603.9	605.4	606.5
	67.499	55.438	48.994	43.218	38.585	34.938	31.969	29.46
	1.5045	1.4910	1.4779	1.4650	1.4531	1.4422	1.4327	1.4241
130	+67.87	+76.16	+77.77	+81.87	+85.60	+89.19	+92.24	+95.17
	592.7	594.2	595.6	596.7	598.0	598.9	600.2	601.4
	66.235	54.476	48.087	42.426	37.890	34.286	31.390	28.93
	1.4951	1.4815	1.4683	1.4553	1.4435	1.4326	1.4232	1.4144
130°	+57.87	+66.16	+67.77	+71.87	+75.60	+79.19	+82.24	+85.17
	587.6	589.1	590.5	591.7	592.9	594.2	595.3	596.4
	64.969	53.512	47.179	41.634	37.186	33.693	30.817	28.39
	1.4863	1.4718	1.4585	1.4456	1.4337	1.4229	1.4135	1.4047
110	+47.87	+56.16	+57.77	+61.87	+65.60	+69.19	+72.24	+75.17
	582.6	584.1	585.5	586.6	587.9	589.2	590.2	591.3
	63.703	52.547	46.270	40.839	36.460	33.069	30.239	27.86
	1.4753	1.4618	1.4486	1.4357	1.4238	1.4129	1.4036	1.3040
Vapor	527.5	529.0	530.3	531.4	532.6	533.8	534.8	535.8
	49.72	41.79	36.23	32.05	28.75	26.05	23.84	21.99
	1.3533	1.3400	1.3270	1.3143	1.3026	1.2919	1.2827	1.2742
Liquid	-62.13 -106.2 0.02260 2407	-56.84 -100.4 0.02273 2261	- 95.3 - 95.3 - 0.02286 2135	- 90.8 0.02.198 2022	- 86.5 0.02308 - 1919	- 82.9 0.02318 1826	- 79.3 - 79.3 - 0.02326 1743	- 76.0 - 76.0 - 0.02333 1665
	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.
	Q	Q	Q	Q	Q	Q	Q	Q
	Vol.	Vol.	Vol.	Vol.	Vol.	Vol.	Vol.	Vol.
 i					٥	9		13

(Nos. 13 to 20)
 AMMONIA
SUPERHEATED

				מ	OFENDER	ILED AM	SUFERMENTED AMMOINTA (NOS. 13 to 26)	NOS. 13 to 2	6)				
		Liquid	Vapor	•01	°0°	30.	••	50°	.00	70	%	. 8	7.001
13	Temp. O Vol.	-32.10 -73.1 0.02340 1592	536.6 20.40 1.2667	-22.10 541.6 20.90 1.2790	-12.10 546.6 21.39 1.2907	- 2.10 551.7 21.88 1.3021	+ 7.90 556.7 22.38 1.3137	+17.90 561.7 22.88 1.3246	+27.90 566.8 23.37 1.3355	+37.90 571.9 23.87 1.3462	+47.90 576.9 24.36 1.3567	+57.90 582.0 24.85 1.3670	+67.90 587.1 25.35 1.3773
4	Temp. Q Vol.	-29.55 -70.2 0.02345 1523	537.5 19.02 1.2599	-10.55 542.5 19.48 1.2721	- 9.55 547.6 19.94 1.2839	+ 0.45 552.6 20.41 1.2952	+10.45 557.7 20.87 1.3068	+20.45 562.7 21.33 1.3177	+30.45 567.8 21.78 1.3286	+40.45 572.8 22.25 1.3392	+50.45 577.9 22.71 1.3499	+60.45 582.9 23.17 1.3601	+70.45 588.0 23.63 1.3703
15	Temp. Q Vol.	-27.16 -67.5 0.02351 1458	538.5 17.83 1.2537	-17.16 543.5 18.28 1.2659	- 7.16 548.6 18.70 1.2777	+ 2.84 553.6 19.13 1.2889	+12.84 558.7 19.55 1.3005	+22.84 563.7 19.98 1.3114	+32.84 568.8 20.41	+42.84 573.9 20.85 1.3329	+52.84 578.9 21.28 1.3436	+62.84 584.0 21.72 1.3538	+72.84 589.1 22.15 1.3639
16	Temp. Q Vol.	-24.87 -65.0 0.02356 1399	7 538.7 16.78 1.2473	-14.87 543.7 17.19 1.2594	- 4.87 548.8 17.60 1.2713	+ 5.13 553.8 18.01 1.2825	+15.13 558.9 18.41 1.2940	+25.13 563.9 18.82 1.3049	+35.13 569.0 19.23 1.3157	+45.13 574.1 19.63 1.3264	+55.13 579.1 20.04 1.3371	+65.13 584.2 20.45 1.3473	+75.13 589.3 20.85 1.3573
17	Temp. Q Vol.	-62.4 -62.4 0.02361 1343	539.5 15.85 1.2416	-12.69 544.6 16.25 1.2536	- 2.69 549.6 16.64 1.2656	+ 7.31 554.7 17.02 1.2767	+17.31 559.7 17.41 1.2882	+27.31 564.8 17.79 1.2991	+37.31 569.9 18.17 1.3099	+47.31 575.0 18.56 1.3206	+57.31 580.0 18.94 1.3312	+67.31 585.1 19.32 1.3415	+77.31 590.2 19.71 1.3515
, 81	Temp. Q Vol.	-60.1 -60.1 0.02366 1289	1 540.0 15.015 1.2361	-10.61 545.1 15.38 1.2481	- 0.61 550.1 15.74 1.2600	+ 9.39 555.2 16.11	+19.39 560.2 16.41 1.2826	+29.39 565.3 16.83	+39.39 570.4 17.20 1.3043	+49.39 575.5 17.56 1.3150	+59.39 580.5 17.92 1.3256	+69.39 585.6 18.28 1.3359	+79.39 590.7 18.65 1.3459
61	Temp. Q Vol.	- 18.63 - 57.9 0.02371 1238	3 540.5 14.30 1.2311	- 8.63 545.6 14.64 1.2431	+ 1.37 550.6 14.99 1.2550	+11.37 555.7 15.34 1.2661	+21.37 560.7 15.67 1.2775	+31.37 565.8 16.01 1.2884	+41.37 570.9 16.36 1.2992	+51.37 576.0 16.70 1.3099	+61.37 581.1 17.05 1.3204	+71.37 586.2 17.38 1.3307	+81.37 591.3 17.72 1.3408
8	Temp. Q Vol.	-16.70 -55.7 0.02376 1188	541.0 13.66 1.2262	- 6.70 546.1 13.985 1.2382	+ 3.30 551.1 14.309 1.2501	+13.30 556.2 14.632 1.2612	+23.30 561.2 14.955 1.2725	+33.30 566.4 15.277 1.2834	+43.30 571.5 15.601 1.2942	+53.30 576.60 15.923 1.3049	+63.30 581.7 16.245 1.3152	+73.30 586.8 16.566 1.3256	+83.30 591.9 16.888 1.3357

	300	+267.90 689.8 35.21 1.5485	+270.45 690.9 32.80 1.5411	+272.84 692.0 30.69 1.5347	+275.13 692.3 28.86 1.5278	+277.31 693.3 27.24 1.5216	+279.39 693.9 25.77 1.5159	+281.39 694.5 24.48 1.5105	+283.30 696.1 23.29 1.5052
	250	+217.90 + 663.8 32.74 1.5105	+220.45 664.8 30.51 1.5033	+222.84 + 665.9 28.57 1.4967	+225.13 666.2 26.86 1.4901	+227.31 662.1 25.36 1.4841	+229.39 + 667.7 24.00 1.4784	+231.37 668.4 22.80 1.4731	+233.30 + 669.0 21.75 1.4677
	300	+167.90 638.1 30.27 1.4697	+170.45 + 639.1 28.22 1.4627	+172.84 + 640.2 26.44 1.4562	+175.13 + 640.4 24.87 1.4495	+177.31 + 641.3 23.49 1.4435	+179.39 + 641.9 22.23 1.4378	+181.37 + 642.5 21.12 1.4326	+183.30 + 643.1 20.183
	180°	+147.90 627.9 29.29 1.4522	+150.45 628.7 27.31 1.4451	+152.84 629.9 25.59 1.4387	+155.13 630.2 24.07 1.4321	+157.31 631.1 22.73 1.4261	+159.39 631.7 21.52 1.4203	+161.37 632.2 20.44 1.4150	+163.30 632.8 19.506 1.4099
Continued	, 160°	+127.90 617.6 28.30 1.4345	+130.45 618.6 26.39 1.4274	+132.84 619.6 24.74 1.4209	+135.13 619.9 23.28 1.4143	+137.31 620.8 21.96 1.4084	+139.39 621.4 20.81 1.4026	+141.37 621.9 19.76 1.3974	+143.30 622.5 18.829 1.3922
to 20).—(150	+117.90 612.5 27.80 1.4252	+120.45 613.5 25.93 1.4182	+122.84 614.5 24.31 1.4118	+125.13 614.8 22.88 1.4052	+127.31 61.57 21.60 1.3993	+129.39 616.3 20.46 1.3936	+131.37 616.8 19.43 1.3883	+133.30 617.4 18.49 1.3832
A (Nos. 13	140	+107.90 607.4 27.32 1.4165	+110.45 608.4 25.47 1.4094	+112.84 609.4 23.88 1.4029	+115.13 609.7 22.47 1.3963	+117.31 610.6 21.22 1.3994	+119.39 611.3 20.09 1.3846	+121.37 611.7 19.08 1.3794	+123.30 612.3 18.170 1.3743
AMMONI	130	+ 97.90 602.3 26.82 1.4067	+100.45 603.3 25.01 1.3998	+102.84 604.3 23.45 1.3934	+105.13 604.6 22.07 1.3868	+107.31 605.5 20.84 1.3809	+109.39 606.1 19.73 1.3751	+111.37 606.6 18.74 1.3699	+113.30 607.2 17.850 1.3647
SUPERHEATED AMMONIA (Nos. 13 to 20). — Continued	130	+ 87.90 597.3 26.33 1.3970	+ 90.45 598.2 24.55 1.3900	+ 92.84 599.3 23.01 1.3837	+ 95.13 599.5 21.67 1.3772	+ 97.31 600.4 20.46 1.3714	+ 99.39 600.9 19.37 1.3657	+101.37 601.5 18.41 1.3605	+103.30 602.1 17.529 1.3552
SUPER	,110	+77.90 592.2 25.84 1.3872	+80.45 593.1 24.09 1.3802	+82.84 594.2 22.58 1.3737	+85.13 594.4 21.26 1.3672	+87.31 595.3 20.08 1.3614	+89.39 595.8 19.01 1.3558	+91.37 596.4 18.07 1.3506	+93.30 597.0 17.209 1.3454
	Vapor	536.6 20.40 1.2667	537.5 19.02 1.2599	6 538.5 17.83 1.2537	7 538.7 16.78 1.2473	9 539.5 15.85 1.2416	1 540.0 15.015 1.2361	3 540.5 14.30 1.2311	541.0 13.66 1.2262
	Liquid	-32.10 -73.1 0.02340 1592	- 29.55 - 70.2 0.02345 1523	-67.5 -67.5 -0.02351 1458	-24.87 -65.0 0.02356 1399	-62.4 -0.02361 -1343	- 20.61 - 60.1 - 62366 - 1289	- 18.63 - 57.9 0.02371 1238	-16.70 -55.7 0.02376 1188
		Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.
		13	14	15	91	17	80	61	8

₽
200
2
Ţ
21
``
Š
ĭ
•
_
7
Z
0
Z
3
F
٦
Q
囝
\vdash
⋖
Ξ
H
ĸ
茵
且
봈

+ 5.16 + 5.16 + 25.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 + 45.16 55.16 1.306 1.3106 1.3106 1.3106 1.3106 1.3206 1.3106 1.3206			Liquid	Vapor	10°	30°	30.	40°	30.	.%	*04	•%	%	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Temp. Q Vol.	. 2.4	, v)	- 4.84 546.5 13.335 1.2337	+ 5.16 551.5 13.644 1.2456	+15.16 556.6 13.955 1.2567	+25.16 561.6 14.275 1.2679	+35.16 566.8 14.573 1.2788	+45.16 571.9 14.882 1.2896	+55.16 577.0 15.191 1.3003	+65.16 582.1 15.499 1.3106	+75.16 587.2 15.807 1.3209	+85.16 591.3 16.114 1.3309
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Temp. Q Vol.	51.6 0.023 .109	541.7 12.470 1.217	3.07 46.8 12.767 1.2293		- 2	+26.93 561.9 13.655 1.2635	+36.93 567.1 13.950 1.2743	+46.93 572.2 14.246 1.2851	+56.93 577.3 14.541 1.2957	+66.93 582.4 14.835 1.3062	+76.93 587.5 15.129 1.3163	+86.93 592.6 15.423 1.3263
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Temp. Q Vol.	-11.3 -49.6 0.02390 1043	2. I	- 1.36 547.3 12.251 1.2259	+ 8.64 552.4 12.536 1.2377	° 88	+28.64 562.5 13.105 1.2600	+3 56	16	+58.64 577.8 13.955 1.2922	+68.64 583.0 14.238 1.3027	+78.64 588.1 14.521 1.3128	+88.64 593.2 14.803 1.3228
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Temp. Q Vol.	. 25 2	2 1	+ 0.31 547.7 11.763 1.2211	88	+20.31 557.8 12.307 1.2440	+30.31 562.9 12.579 1.2551	+40.31 568.0 12.850 1.2659	1 67	+60.31 578.3 13.392	+70.31 583.4 13.663 1.2978	+86.31 588.6 13.933 1.3079	+90.31 593.7 14.203 1.3179
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Temp. Q Vol.	. (4)	χ ₁	+ 1.92 548.1 11.327 1.2173	+11.92 553.2 11.589 1.2289	+21.92 558.3 11.85 1.2401	+31.92 563.4 12.11 1.2513	202	~ ∞		+71.92 583.9 13.153 1.2938	+81.92 589.0 13.412 1.3040	+91.92 594.1 13.672 1.3140
- 5.06 + 4.94 + 14.94 + 24.94 + 24.94 + 24.94 + 54.94 584.6 584.6 584.6 12.242 12.242 12.242 12.242 12.242 12.242 12.242 12.264 12.264 12.264 12.264 12.264 12.264 12.264 12.264 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.244 12.224 12.227 12.227 12.227 12.244 12.227 12.227 12.227 12.227 12.227 12.227 12.227 12.227 12.227 12.227 12.227 12.227 12.227 12.227 12.227<		Temp. Q Vol.	. 4-10	42 i	38	+13.46 . 553.5 11.184 1.2254	. •	+33.46 563.7 11.685 1.2477	+ ",	+53.46 573.9 12.185 1.2691	+ 80	#	+83.46 589.3 12.932 1.3003	+93.46 594.4 13.181 1.3103
-3.59 + 6.41 + 16.41 + 26.41 + 26.41 + 46.41 + 56.41 + 56.41 + 76.41 + 76.41 + 86.41 + 76.41 + 86.41 + 76.41 + 86.41 + 76.41 + 86.41 + 76.41		Temp. Q Vol.	. 3.3	2 2 1	т н б	+14.94 553.8 10.793	80	+34.94 564.1 11.277 1.2441	+ "	54	+64.94 579.4 12.001 1.2761	. 	+84.94 •589.7 12.482 1.2966	+94.94 594.8 12.723 1.3066
		Temp. Q Vol.	-40.8 0.02410 0859	543.9 9.969 1.1946	~. ₇ 2	+16.41 554.1 10.436 1.2181	+26.41 559.3 10.669 1.2292	+36.41 564.4 10.902 1.2404	+46.41 569.5 11.134 1.2509	71	6 7 7		+ 5	+96.41 595.2 12.294 1.3027

g
2
3
ē
7
١.
28
~
₽
21
ś
٥
Ž
<
ij
AMMONIA
ž
⋝
ED
띪
-
Ķ
PERHEA'
2
囸
욘
ร

				SUPER	SUPERHEATED	AMMONI	A (Nos. 21	AMMONIA (Nos. 21 to 28). — Continued	Continued				1
		Liquid	Vapor	110	120	130°	140	150°	, 160°	180	300	250	300
21	Temp. Q Vol.	-53.6 0.02381 -1141	541.4 13.025 1.2217	+ 95.16 597.4 16.422 1.3408	+105.16 602.5 16.729 1.3506	+115.16 607.7 17.036 1.3601	+125.16 612.8 17.344 1.3695	+135.16 617.9 17.65 1.3785	+145.16 623.0 17.956 1.3875	+165.16 633.3 18.559 1.4050	+185.16 643.6 19.180 1.4227	+235.16 669.5 20.707 1.4629	+285.16 695.7 22.23 1.5004
23	Temp. Q Vol.	-51.6 -52.6 0.02386 - 1.096	7 541.7 12.470 1.2173	+ 96.93 597.7 15.717 1.3363	+106.93 602.8 16.011 1.3461	+116.93 608.0 16.304 1.3554	+126.93 613.1 16.597 1.3651	+136.93 618.2 16.890 1.3738	+146.93 623.4 17.192 1.3828	+166.93 633.7 17.766 1.4003	+186.93 644.0 18.350 1.4181	+236.93 669.9 19.806 1.4583	+286.93 696.1 21.26 1.4956
23	Temp. Q Vol.	-11.36 -49.6 0.02390 1043	542.2 11.965 1.2139	+ 98.64 598.3 15.085 1.3328	F108.64 603.4 15.367 1.3424	+118.64 608.6 15.638 1.3519	+128.64 613.7 15.958 1.3614	+138.64 618.8 16.20 1.3702	+148.64 624.0 16.486 1.3791	+168.64 634.2 17.038 1.3967	+188.64 644.6 17.596 1.4143	+238.64 670.5 18.989 1.4544	+288.64 696.7 20.102 1.4919
4	Temp. Q Vol.	06.9 – 47.7 – 0.0394 – 0.011	9 542.6 11.490 1.2091	+100.31 598.8 14.473 1.3278	+110.31 603.9 14.743 1.3374	+120.31 609.1 15.012 1.3469	+130.31 614.2 15.281 1.3564	+140.31 619.3 15.55 1.3652	+150.31 624.5 15.816 1.3741	+160.31 634.8 16.347 1.3917	+190.31 645.1 16.877 1.4091	+240.31 671.0 18.20 1.4493	+290.31 697.2 19.52 1.4867
25	Temp. Q Vol.	- 8.08 -45.9 0.02399 0970	8 543.0 11.065 1.2053	+101.92 599.2 13.931 1.3238	+111.92 604.3 14.190 1.3334	+121.92 609.5 14.448 1.3429	+131.92 614.6 14.707 1.3524	+141.92 619.7 14.965 1.3612	+151.92 624.9 15.278 1.3702	+171.92 635.2 15.791 1.3877	+191.92 645.5 16.303 1.4052	+241.92 671.5 17.586 1.4453	+291.92 697.7 18.81 1.4826
36	Temp. Q Vol.	- 6.54 - 44.2 0.02403 - 0.0332	4 543.3 10.682 1.2018	+103.46 599.5 13.429 1.3200	+113.46 604.7 13.677 1.3298	+123.46 609.8 13.915 1.3393	+133.46 615.0 14.173 1.3487	+143.46 620.1 14.42 1.3574	+153.46 625.3 14.67 1.3665	+173.46 635.6 15.163 1.3840	+193.46 645.9 15.657 1.4015	+243.46 671.9 16.890 1.4416	+293.46 698.2 18.12 1.4788
27	Temp. Q Vol.	- 42.5 - 0.02407 - 0.0895	6 543.6 10.308 1.1982	+104.94 599.9 12.963 1.3162	+114.94 605.1 13.202 1.3261	+124.94 610.2 13.442 1.3355	+134.94 614.4 13.881 1.3450	+144.94 620.5 13.92 1.3535	+154.94 625.7 14.158 1.3627	+174.94 636.0 14.635 1.3801	+194.94 646.3 15.110 1.3977	+244.94 672.3 16.296 1.4377	+294.94 698.6 17.48 1.47.9
%	Temp. Q Vol.	- 40.8 - 0.02410 - 0.0859	9 543.9 9.969 1.1946	+106.41 600.3 12.526 1.3124	+116.41 605.4 12.757 1.3223	+126.41 610.6 12.988 1.3316	+136.41 615.7 13.219 1.3411	+146.41 620.8 13.45 1.3498	+156.41 626.0 13.680 1.3587	+176.41 636.3 14.141 1.3763	+196.41 646.7 14.600 1.3038	+246.41 672.7 15.747 1.4338	+296.41 699.1 16.89 1.4709
i													

$\overline{}$
4
4
0
_
×
30 1
'n
ŏ
×
4
$\overline{}$
_
⋖;
\mathbf{H}
Z
$\overline{}$
\subseteq
⋝
=
2
-
~
_
\Box
(+)
$\overline{}$
Н
⋖
G.
=
ж
W.
Ξ
Ĭ,
д
5
7
U

	,	Liquid	Vapor	10°	30.	°og	•0	50°	•%	•04	.		•001
		'								3 3 -	1 3		
O - 37.6 Q - 37.6 Vol. 0.02418 •0789	-37.6 0.02 -	- 0.78 418 89	.78 544.5 9.344 1.1884	+ 9.22 549.6 9.563 1.2002	+19.22 554.7 9.782 1.2118	+29.22 559.9 10.00 1.2229	+39.22 565.0 10.218 1.2340	+49.22 570.1 10.436 1.2445	+59.22 575.3 10.653 1.2553	+99.22 580.4 10.871 1.2659	+79.22 585.6 11.088 1.2763	+89.24 590.7 11.304 1.2864	+ 99.22 595.9 11.521 1.2962
Temp34.6 Q -34.6 Vol. 0.024	1 34.6 0.0	+ 1.88 94.6 0.02425 .0722	.88 545.1 8.798 1.1827	+11.88 550.2 9.003 1.1945	+21.88 555.3 9.209 1.2061	+31.88 560.5 9.413 1.2169	+41.88 565.6 9.618	+51.88. 570.7 9.822 1.2387	+61.88 575.9 10.026 1.2495	+71.88 581.1 10.230 1.2600	+81.88 586.2 10.433 1.2703	+91.88 591.4 10.636 1.2805	+101.88 596.6 10.839 1.2902
Cemp. – 31.7 7 ol. – 3024	31.0	+ 4.43 0.02432 0.059	43 8.302 1.1772	+14.43 550.7 8.497 1.1890	+24.43 555.9 8.691	+34.43 561.0 8.885 1.2113	+44.43 566.2 9.078 1.2224	+54.43 571.3 9.271 1.2332	+64.43 576.5 9.465 1.2437	+74.43 581.6 9.656 1.2543	+84.43 586.8 9.850 1.2646	+94.43 591.9 10.042 1.2746	+104.43 597.1 10.234 1.2844
Temp. – 28. /ol. – 0	1 1	+ 6.83 -28.9 0.02438 - 0.599	.83 546.2 7.870 1.1722	+16.83 551.4 8.054 1.1840	+26.83 556.4 8.248 1.1954	+36.83 561.7 8.421 1.2062	+46.83 566.8 8.604 1.2172	+56.83 572.0 8.789 1.2281	+66.83 577.2 8.969 1.2385	+76.83 582.4 9.152 1.2491	+86.83 587.5 9.333 1.2594	+96.83 592.7 9.515 1.2693	+106.83 597.9 9.697 1.2791
Cemp. – 26 7 ol. – 9	1 0	+ 9.14 -26.3 0.02445 0543	546.6 7.478 1.1675	+19.14 551.8 7.654 1.1792	+29.14 556.8 7.830 1.1906	+39.14 562.1 8.005 1.2015	+49.14 567.2 8.180 1.2125	+59.14 572.4 8.355 1.2232	+69.14 576.6 8.529 1.2335	+79.14 582.8 8.703 1.2442	+89.14 587.9 8.876 1.2545	+99.14 593.1 9.049 1.2644	+109.14 598.3 9.222 1.2740
Temp. – 23 Vol. – 0	1 1	+11.34 -23.7 0.02450 0490	.34 547.0 7.117 1.1629			+41.34 562.4 7.524 1.1968	+51.34 567.7 7.797 1.2078	+61.34 572.9 7.959 1.2184	+71.34 578.1 8.126 1.2288	+81.34 583.3 8.293 1.2394	+91.34 588.4 8.458 1.2497	+101.34 593.6 8.623 1.2596	+111.34 598.8 8.788 1.2691
Cemp. – 21.2 701. – 0.02	121	+13.48 21.2 0.02457 .0438	547.5 6.797 1.1580	+23.48 552.7 6.959 1.1695	+33.48 557.9 7.118 1.1810	+43.48 562.9 7.280 1.1918	+53.48 568.2 7.440 1.2028	+63.48 573.4 7.600 1.2132	+73.48 578.6 7.759 1.2237	+83.48 583.8 7.917 1.2343	+93.48 589.0 8.076 1.2445	+103.48 594.2 8.234 1.2544	+113.48 599.4 8.391 1.2640
[emp. – 16]	Ĭ	+15.56 -18.8 0.02463 0388	547.9 6.504 1.1535	+25.56 553.1 6.659 1.1650	+35.56 558.3 6.814 1.1765	+45.56 563.5 6.968 1.1871	+55.56 568.7 7.121 1.1982	+65.56 573.9 7.274 1.2086	+75.56 579.1 7.426 1.2190	+85.56 584.3 7.577 1.2295	+95.56 589.5 7.728 1.2398	+105.56 594.7 7.878 1.2496	

	300	+299.22 699.8 15.82 1.4641	+301.88 · 700.6 14.88 1.4577	+304.43 701.4 14.04 1.4515	+306.83 698.2 13.30 1.4459	+309.14 702.8 12.63 1.4405	+311.34 703.4 12.033 1.4352	+313.48 704.1 11.494 1.4298	+315.56 704.7 11.001 1.4245
	250°	+249.22 673.5 14.750 1.4270	+251.88 674.3 13.873 1.4207	+254.43 675.0 13.093 1.4146	+256.83 675.8 12.423 1.4090	+259.14 676.4 11.782 1.4039	+261.34 677.0 11.227 1.3987	+263.48 677.7 10.723 1.3930	+265.56 678.2 10.270 1.3880
	200	+199.22 647.5 13.677 1.3872	+201.88 648.2 12.863 1.3809	+204.43 648.9 12.143 1.3749	+206.83 649.7 11.524 1.3694	+209.14 650.2 10.833 1.3643	+211.34 650.8 10.418 1.3590	+213.48 651.4 9.950 1.3536	+215.56 652.0 9.535 1.3486
	180	+179.22 637.1 13.246 1.3696	+181.88 637.8 12.459 1.3634	+184.43 638.5 11.762 1.3574	+186.83 639.3 11.163 1.3520	+189.14 639.8- 10.592 1.3468	+191.34 640.4 10.094 1.3417	+193.48 641.0 9.640 1.3363	+195.56 641.6 9.241 1.3313
Continued	160	+159.22 626.7 12.816 1.3521	+161.88 627.5 12.053 3.3459	+164.43 628.2 11.381 1.3400	+166.83 628.9 10.801 1.3344	+169.14 629.4 10.251 1.3293	+171.34 629.9 9.669 1.3242	+173.48 630.6 9.330 1.3189	+175.56 631.1 8.946 1.3140
SUPERHEATED AMMONIA (Nos. 30 to 44). — Continued	150	+149.22 621.5 12.60 1.3433	+151.88 622.3 11.85 1.3371	+154.43 623.0 11.19 1.3311	+156.83 623.7 10.60 1.3257.	+159.14 624.2 10.08 1.3205	+161.34 624.7 9.606 1.3156	+163.48 625.4 9.174 1.3102	+165.56 625.9 8.771 1.3063
A (Nos. 30	140	+139.22 616.4 12.385 1.3346	+141.88 617.3 11.648 1.3285	+144.43 617.8 10.999 1.3226	+146.83 618.5 10.420 1.3172	+149.14 619.0 9.909 1.3122	+151.34 619.5 9.443 1.3072	+153.48 620.2 9.018 1.3019	+155.56 620.7 8.623 1.2970
AMMONI	130	+129.22 611.3 12.169 1.3250	+131.88 612.0 11.446 1.3190	+134.43 612.6 10.808 1.3131	+136.83 613.4 10.239 1.3077	+139.14 613.8 9.737 1.3025	+141.34 614.3 9.280 1.2975	+143.48 615.0 8.862 1.2923	+145.56 615.5 8.475 1.2875
HEATED	120	+119.22 606.1 11.953 1.3157	+121.88 606.9 11.244 1.3097	+124.43 607.5 10.617 1.3040	+126.83 608.2 10.059 1.2986	+129.14 608.7 9.566 1.2935	+131.34 609.2 9.116 1.2884	+133.48 609.8 8.685 1.2832	+135.56 610.3 8.326 1.2785
SUPER	110	+109.22 601.0 11.737 1.3059	+111.88 601.7 11.042 1.2999	+114.43 602.3 10.426 1.2940	+116.83 603.1 9.878 1.2887	+119.14 603.5 9.395 1.2837	+121.34 604.0 8.952 1.2788	+123.48 604.6 8.548 1.2736	+125.56 605.1 8.178 1.2688
	Vapor	8 544.5 9.344 1.1884	8 545.1 8.798 1.1827	3 545.6 8.302 1.1772	3 546.2 7.870 1.1722	4 546.6 7.478 1.1675	4 547.0 7.117 1.1629	8 547.5 6.797 1.1580	547.9 6.504 1.1535
	Liquid	- 0.78 -37.6 0.02418 0789	+ 1.88 -34.6 0.02425 0722	+ 4.43 -31.7 0.02432 0659	+ 6.83 -28.9 0.02438 - 0.0599		+11.34 -23.7 0.02450 0490	+13.48 -21.2 0.02457 0438	+15.56 -18.8 0.02463 - 0.388
		Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.
		. 30	32	34.	36	38	4	4	4

73)
46 to
(Nos.
AMMONIA
SUPERHEATED

 i		Liquid	Vapor	•01	30	30°	40	50°	•9	•04	8	•06	100
	Temp. Q Vol.	+17.59 -16.6 0.02468 0341	59 548.2 6.239 1.1494	+27.59 553.4 6.388 1.1608	+37.59 558.6 6.537 1.1724	+47.59 563.8 6.685 1.1829	+57.59 569.0 6.832 1.1939	+67.59 574.2 6.978 1.2044	+ 77.59 579.4 7.125 1.2147	+ 87.59 584.6 7.270 1.2252	+ 97.59 589.9 7.415	+107.59 595.1 7.559 1.2452	+117.59 600.3 7.703 1.2547
	Temp. Q Vol.	+19.48 -14.4 0.02474 0295	548.6 5.998 1.1454	+29.48 553.8 6.142 1.1567	+39.48 559.0 6.287 1.1683	+49.48 564.3 6.428 1.1787	+59.48 569.5 6.570 1.1896	+69.48 574.7 6.711	+ 79.48 579.9 6.851 1.2106	+ 89.48 585.1 6.990 1.2207	+ 99.48 590.3 7.129 1.2312	+109.48 595.5 7.268 1.2409	+119.48 600.7 7.406 1.2504
	Temp. Q Vol.	+21.29 -12.2 0.02479 0252	29 549.0 5.776 1.1416	+31.29 554.2 5.916 1.1528	+41.29 559.5 6.054 1.1645	+51.29 564.7 6.191 1.1748	+61.29 570.0 6.328 1.1857	+71.29 575.2 6.462 1.1963	+ 81.29 580.4 6.597 1.2066	+ 91.29 585.6 6.731 1.2171	+101.29 590.8 6.864 1.2271	+111.29 596.0 6.997 1.2368	+121.29 601.2 7.129 1.2464
	Temp. Q Vol.	+25.70 - 7.2 0.02492 0150	549.7 5.284 5.284 1.1326	+35.70 554.9 5.410 1.1437	+45.70 560.2 5.535 1.1554	+55.70 565.4 5.659 1.1656	+65.70 570.7 5.783 1.1765	+75.70 575.9 5.905 1.1868	+ 85.70 581.1 6.028	+ 95.70 586.4 6.149 1.2076	+105.70 591.6 6.270 1.2176	•	+125.70 602.1 6.510 1.2366
	Temp. Q Vol.	+29.76 - 2.6 0.02504 0053	550.3 4.861 1.1243	+39.76 555.6 4.977	+49.76 560.8 5.093. 1.1470	+59.76 566.1 5.208 1.1572	+69.76 571.3 5.322 1.1679	+79.76 576.6 5.435 1.1782	+ 89.76 581.9 5.548 1.1883	+ 99.76 587.1 5.660 1.1988	+109.76 592.4 5.772 1.2088	+119.76 597.6 5.883 1.2185	+129.76 602.9 5.994 1.2276
	Temp. Q Vol.	+ 1.9 + 1.9 • 0.02515 + .0038	551.1 4.505 1.1166	+43.62 556.4 4.613 1.1276	+53.62 561.7 4.720 1.1390	+63.62 566.9 4.826 1.1492	+73.62 572.2 4.932 1.1598	+83.62 577.5 5.037 1.1701	+ 93.62 582.8 5.141 1.1802	+103.62 588.0 5.245 1.1906	+113.62 593.3 5.349 1.2005		+133.62 603.8 5.554 1.2194
	Temp. Q Vol. •	+ 5.9 0.02526 + .0121	551.6 4.197 1.1096	+47.22 556.9 4.298 1.1205	+57.22 562.2 4.398 1.1318	+67.22 567.4 4.498 1.1420	+77.22 572.7 4.596 1.1526	+87.22 578.0 4.695 1.1628	+ 97.22 583.3 4.792 1.1728	+107.22 588.6 4.890 1.1831	+117.22 593.8 4.986 1.1930	+127.22 599.1 5.081 1.2026	+137.22 604.4 5.177 1.2116
	Temp. Q Vol.	+ 9.0 + 9.0 0.02536 + .0200	552.1 3.927 1.1032	+50.66 557.4 4.022 1.1141				+90.66 578.6 4.395 1.1562	+100.66 583.9 4.487 1.1661	+110.66 589.2 4.579 1.1762	+120.66 594.5 4.669 1.1862	+130.66 599.8 4.760 1.1957	+140.66 605.1 4.850 1.2045

	300	+317.59 705.2 10.537 1.4197	+319.48 705.7 10.121 1.4152	+321.29 706.3 9.737 1.4108	+325.70 707.5 8.888 1.4001	+329.76 708.5 8.196 1.3904	+333.62 709.7 7.604 1.3818	+337.22 710.5 7.092 1.3731	+340.66 711.4 6.648 , 1.3652
	250	+267.59 678.7 9.833 1.3834	+269.48 679.3 9.463 1.3792	+271.29 679.9 9.103 1.3745	+275.70 680.9 8.255 1.3641	+279.76 681.9 7.647 1.3546	+283.63 683.0 7.079 1.3456	+287.22 683.9 6.619 1.3372	+290.66 684.7 6.197 1.3296
	200	+217.59 652.4 9.117 1.3442	+219.48 652.9 8.800 1.3396	+221.29 653.5 8.452 1.3354	+225.70 654.5 7.690 1.3251	-229.76 655.4 7.095 1.3158	+233.62 656.5 6.552 1.3069	+237.22 657.3 6.135 1.2989	+240.66 658.0 5.746 1.2915
	180°	+197.59 642.0 8.843 1.3267	+199.48 642.5 8.516 1.3223	+201.29 643.0 8.185 1.3180	+205.70 644.0 7.463 1.3078	+209.76 644.9 6.874 1.2985	+213.62 646.0 6.340 1.2898	+217.22 646.7 5.941 1.2818	+220.66 647.4 5.565 1.2744
Continued	160	+177.59 631.5 8.559 1.3094	+179.48 632.0 8.232 1.3052	+181.29 632.5 7.917 1.3009	+185.70 633.5 7.223 1.2908	+189.76 634.4 6.652 1.2815	+193.62 635.5 6.151 1.2728	+197.22 636.2 5.747 1.2648	+200.66 636.9 5.384 1.2577
AMMONIA (Nos. 46 to 75).—	150	+167.59 626.3 8.417 1.3018	+169.48 626.8 8.090 1.2974	+171.29 627.3 7.782 1.2931	+175.70 628.3 7.102 1.2823	+179.76 629.1 6.540 1.2731	+183.62 630.2 6.060 1.2644	F187.22 630.9 5.649 1.2566	+190.66 631.6 5.293 1.2492
IA (Nos. 4	140	+157.59 621.1 8.275 1.2925	+159.48 621.6 7.954 1.2882	+161.29 622.1 7.652 1.2840	+165.70 623.1 6.985 1.2741		<u>'</u>	•	+180.66 626.3 5.205 1.2413
AMMON	130	+147.59 615.9 8.132 1.2832	_'	+151.29 616.9 7.522 1.2746	+155.70 617.8 6.867 1.2648	+159.76 618.6 6.323 1.2556	+163.62 619.6 5.859 1.2471	+167.22 620.3 5.462 1.2395	+170.66 621.0 5.117 1.2323
SUPERHEATED	130	+137.59 610.7 7.989 1.2742	+139.48 611.1 7.681 1.2698	+141.29 611.6 7.391 1.2656	+145.70 612.6 6.749 1.2558	+149.76 613, 6.213 1.2468	+153.62 614.4 5.758 1.2384	+157.22 615.0 5.367 1.2306	+160.66 615.7 5.028 1.2236
SUPER	110	+127.59 605.5 7.846 1.2644	+129.48 605.9 7.543 1.2602	+131.29 606.4 7.260 1.2559	+135.70 607.3 6.630 1.2461	+139.76 608.1 6.104 1.2371	+143.62 609.1 5.656 1.2286	+147.22 609.7 5.272 1.2209	+150.66 610.4 4.939 1.2137
	Vapor	548.2 6.239 1.1494	3 548.6 5.998 I.I454	549.0 5.776 1.1416	549.7 5.284 1.1326	550.3 4.861 1.1243	551.1 4.505 1.1166	551.6 4.197 1.1096	552.1 3.927 1.1032
	Liquid	+17.59 -16.6 0.02468 - 0.341	+19.48 -14.4 0.02474 0295	+21.29 -12.2 0.02479 0252	+25.70 - 7.3 0.02492 0150	+29.76 - 2.6 5. 0.02504 0053	+ 1.9 + 0.02515 + 0.038	+ 5.9 0.02526 + .0121	+ 40.66 + 9.9 0.02536 + .0200
		Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.
		94	84	55	55	8	65	2	75

₩.
Ħ,
H
2
_
ŏ
rń
(Nos
Ž.
$\overline{\mathbf{c}}$
_
3
5
۲.
\simeq
AMMONIA
5
3
4
Q
窗
TED
\subseteq
Ξ.
Ξ.
24
ERHE
PERHEAT
5
2

100	+143.88	147.02	149.97	152.83	+155.58	158.14	160.67	163.19
	605.8	606.4	606.9	607.4	607.8	608.2	608.7	609.0
	4.564	4.310	4.083	3.878	3.687	3.520	3.366	3.225
	1.1980	1.1919	1.1861	1.1805	1.1755	1.1704	1.1655	1.1604
	+ 148	+ 14 + 15 + 15 + 15 + 15 + 15 + 15 + 15	+ 2 5	+ 8	+ 62	+ 8	+ 700	+
8	+133.88	+137.02	+139.97	+142.83	+145.58	+148.14	+150.67	+153.19
	600.6	601.1	601.6	602.1	602.4	602.8	603.3	603.6
	4.480	4.230	4.007	3.806	3.618	3.454	3.302	3.164
	1.1892	1.1832	1.1773	1.1718	1.1667	1.1618	1.1569	1.1520
.08	+123.88 595.2 4.395 1.1797	+127.02 595.8 4.150	+129.97 596.3 3.931 1.1678	+132.83 596.8 3.733 1.1623	+135.58 597.1 3.549 1.1573	+138.14 597.4 3.388 1.1524	+140.67 597.9 3.238 1.1475	+143.19 598.2 3.103 1.1426
•04	+113.88	+117.02	+119.97	+122.83	+125.58	+128.14	+130.67	+133.19
	589.9	590.4	590.9	591.4	591.7	592.1	592.5	592.8
	4.309	4.069	3.855	3.660	3.479	3.321	3.174	3.042
	1.1698	1.1639	1.1583	1.1528	1.1478	1.1430	1.1382	1.1333
.8	+103.88 584.6 4.223 1.1597	+107.02 585.1 3.988 1.1538	+109.97 585.6 3.778 1.1482	+112.83 586.1 3.586 1.1428	+115.58 586.4 3.409 1.1379	+118.14 586.7 3.254 1.1331	587.1 3.110 1.1283	+123.19 587.4 2.980 1.1235
905	+ 93.88 579.3 4.137 1.1501	+ 97.02 579.8 3.906 1.1440	+ 99.97 580.3 3.700 1.1384	+102.83 580.8 3.512 1.1332	+105.58 581.0 3.339 1.1284	+108.14 581.3 3.187 1.1236	•	+113.19 582.0 2.918 1.1142
40°	+ 83.88	+ 87.02	+ 89.97	+ 92.83	+ 95.58	+ 98.14	+100.67	+103.19
	574.0	574.4	574.9	575.4	575.6	575.9	576.3	\$76.6
	4.050	3.823	3.622	3.438	3.268	3.119	2.980	\$2.856
	1.1408	1.1350	1.1293	1.1230	1.1194	1.1146	1.1099	1.1052
30°	+73.88	+77.02	+79.97	+82.83	+85.58	+88.14	+90.67	+93.19
	568.7	569.1	568.6	570.0	570.2	570.5	570.9	571.2
	3.963	3.740	3.544	3.363	3.197	3.051	2.915	2.793
	1.1294	1.1236	1.1181	1.1128	1.1080	1.1034	1.0987	1.0042
•00	+63.88	+67.02	+69.97	+72.83	+75.58	+78.14	+80.67	+83.19
	563.3	563.7	564.2	564.7	564.9	565.2	565.5	565.7
	3.874	3.656	3.465	3.287	3.125	2.983	2.849	2.730
	1.1190	1.1134	1.1079	1.1028	1.0980	1.0934	1.0887	1.0841
•01	+53.88	+57.02	+59.97	+62.83	+65.58	+68.14	+70.67	+73.19
	558.0	558.4	558.9	559.3	559.5	559.8	560.1	560.3
	3.786	3.572	3.385	3.211	3.053	2.914	2.783	2.666
	1.1081	1.1025	1.0971	1.0920	1.0872	1.0826	1.0780	1.0734
Vapor	88 552.7 3.696 1.0972	553.1 3.485 1.0917	553.5 3.300 1.0863	33 553.9 3.134 1.0813	2.980 · 1.0767	554.4 2.844 1.0722	55 554.7 2.716 1.0677	19 554.9 2.602 1.0632
Liquid	+13.6 +0.02547 +0.0275	+17.2 0.02556 + .0345	+20.7 0.02566 + .0411	+23.9 0.02575 + .0476	+27.1 0.02584 + .0537	+30.0 -0.02592 + .0596	+33.0 +33.0 0.02601 + .0651	+35.8 +35.8 0.02609 + .0706
	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.
	Q	Q	Q	Q	Q	Q	Q	Q
	Vol.	Vol.	Vol.	Vol.	Vol.	Vol.	Vol.	Vol.
		85	8	95	8	105	011	115

iquid Vapor 110° 120° 130° 140° 150° 150° 200° 250° 300°	+43.88 +153.88 +163.88 +163.88 +193.88 +203.88 +223.88 +243.88 +243.88 +243.88 +343.88 +343.88 0.02547 552.7 611.1 616.4 621.8 627.1 632.4 637.7 648.3 658.9 685.6 712.3 0.02547 3.696 4.648 4.816 4.899 4.982 5.067 5.237 5.406 5.828 6.25 0.0275 1.0972 1.2072 1.2170 1.2255 1.2342 1.2422 1.2674 1.2844 1.3224 1.3580	+47.02 +157.02 +157.02 +157.02 +137.02 +187.02 +197.02 +207.02 +247.02 +247.02 +247.02 +369.4 68.3 13.1 0.02556 3.485 4.389 4.467 4.545 4.623 4.701 4.781 4.942 5.103 5.501 5.501 0.02556 3.485 1.2012 1.2107 1.2107 1.2107 1.2109 1.2109 1.2109 1.2109 1.2109 1.2109 1.2109 1.2109 1.3159 1.3159 1.3514	+49.97 +159.97 +169.97 +179.97 +189.97 +199.97 +299.97 +229.97 +249.97 +249.97 +249.97 +349.97 +349.97 20.7 553.5 612.2 617.5 622.9 628.2 633.5 638.8 648.5 660.2 686.9 713.8 0.02566 3.300 4.159 4.439 4.458 4.458 4.533 4.602 4.842 5.214 5.214 5.586 0.01566 3.300 4.1051 1.2133 1.2222 1.2299 1.2383 1.2358 1.2715 1.3095 1.3447	+52.8 2575 476	27.1 +55.58 +165.58 +175.58 +185.58 +265.58 +235.58 +235.58 +305.58	+58.14 +168.14 +178.14 +178.14 +188.14 +198.14 +208.14 +218.14 +238.14 +258.14 +308.12 +308.14 +308.14 +308.14 +308.14 +308.14 +308.14 +308.14 <th< th=""><th>+60.67 +170.67 +180.67 +190.67 +200.67 +200.67 554.7 614.0 619.4 624.7 630.1 601 2.716 3.429 3.492 3.555 3.618 551 1.0677 1.1742 1.1837 1.1922 1.2008</th><th>+63.19 +173.19 +183.19 +193.19 +203.19 +213.19 +223.19 554.9 614.4 619.7 625.1 630.4 635.8 641.2 609 2.602 3.286 3.346 3.467 3.467 3.520 3.586 60 1.0632 1.1787 1.1872 1.1872 1.2317</th></th<>	+60.67 +170.67 +180.67 +190.67 +200.67 +200.67 554.7 614.0 619.4 624.7 630.1 601 2.716 3.429 3.492 3.555 3.618 551 1.0677 1.1742 1.1837 1.1922 1.2008	+63.19 +173.19 +183.19 +193.19 +203.19 +213.19 +223.19 554.9 614.4 619.7 625.1 630.4 635.8 641.2 609 2.602 3.286 3.346 3.467 3.467 3.520 3.586 60 1.0632 1.1787 1.1872 1.1872 1.2317
Liquid	+13.6 +43.88 +13.6 55 0.02547 + .0275	+17.2 +17.2 0.02556 + 0.345	20.7 20.7 + 0.02566 .0411	+23.9 0.02575 + :0476	+55.58 +27.1 55 0.02584 + .0537	+58.14 +30.0 55 0.02592 + .0596	+60.67 +33.0 5(0.02601 + .0651	+63.19 +35.8 0.02609 + .0706
	% CO. Vol.	85 Q Vol.	Temp.	Temp.	Temp. O Vol.	ros Q Q Vol.	Temp. Vol.	IIS Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

SUPERHEATED AMMONIA (Nos. 120 to 150)

		55.49 99.4 3.096 1.1560	7.81 2.978 1.1518	170.1 609.9 2.868 1.1477	2.2 0.2 2.767 1.1435	.2 .5 .675 .1395	76.3 10.8 2.586 1.1362	8.3 1.1 2.502 1.1328
	100	+ 8	+ 8	+ 8	+172.2 610.2 2.76 1.14	+174.2 610.5 2.675 1.1395	+176.3 610.8 2.58 1.13	+ 617
	°os	+155.49 604.0 3.037 1.1476	+157.81 604.2 2.921 1.1435	+160.1 604.5 2.814 1.1392	+162.2 604.8 2.714 1.1352	+164.2 605.0 2.624 1.1313	+166.3 605.3 2.536 1.1278	+168.3 605.6 2.454 1.1244
	°%	+145.49 598.6 2.979 1.1382	+147.81 598.8 2.865 1.1341	+150.1 599.0 2.759 1.1301	+152.2 599.3 2.661 1.1260	+154.2 599.5 2.571	+156.3 599.8 2.486 1.1187	+158.3 600.1 2.406 1.1153
	•04	+135.49 593.1 2.919 1.1290	+137.81 593.3 2.808 1.1250	+140.1 593.6 2.704 1.1209	+142.2 593.9 2.608 1.1169	+144.2 594.1 2.519 1.1131	+146.3 594.3 2.436 1.1096	+148.3 594.6 2.357 1.1063
99)	.09	+125.49 587.7 2.860 1.1192	+127.81 587.9 2.750 1.1154	+130.1 588.1 2.648 1.1112	+132.2 588.4 2.554 1.1072	+134.2 588.6 2.467 1.1034	+136.3 588.8 2.386 1.1000	+138.3 589.1 2.308 1.0968
77. 140 60 1	50°	+115.49 582.3 2.801 1.1099	.117.81 582.5 2.693 1.1058	582.7 2.592 1.1018	+122.2 \$83.0 2.501 1.0980	-124.2 583.1 2.415 1.0944	-126.3 583.3 2.335 1.0910	F128.3 583.6 2.259 1.0876
	40°	+105.49 576.9 2.741 1.1011	+107.81 577.0 2.635 1.0973	+110.1 577.2 2.536 1.0932	+112.2 577.5 2.337 1.0883	+114.2 577.6 2.362 1.0855	+116.3 577.8 2.284 1.0822	+118.3 578.1 2.210 1.0781
TOTAL TOTAL	30.	+ 95.49 571.4 2.680 1.0902	+ 97.81 571.6 2.577 1.0863	+100.1 571.7 2.480 1.0822	+102.2 572.0 2.392 1.0784	+104.2 572.1 2.309 1.0746	+106.3 572.3 2.232 1.0713	+108.3 572.5 2.160 1.0681
DOI THE THE THE PROPERTY (1003: 140 to 130)	30°	+85.49 566.0 2.620 1.0800	+87.81 566.1 2.528 1.0762	+90.1 566.3 2.423 1.0723	+92.2 566.5 2.338 1.0685	+94.2 566.6 2.256 1.0648	+96.3 566.7 2.180 1.0616	+98.3 567.0 2.109 1.0584
9	10°	+75.49 560.5 2.559 1.0693	+77.81 560.7 2.459 1.0656	+80.1 560.8 2.366 1.0617	+82.2 561.0 2.282 1.0580	+84.2 561.1 2.203 1.0544	+86.3 561.2 2.128 1.0512	+88.3 561.4 2.059 1.0481
	·Vapor	555.1 2.497 1.0592	555.2 2.400 1.0555	555.3 2.309 1.0517	555-5 2.227 1.0480	555.6 2.149 1.0444	555.7 2.076 1.0412	555.9 2.008 1.0381
	Liquid	+38.5 0.02618 +.0758	+41.1 0.02626 + .0808	+43.9 0.02634 + .0858	+72.2 +46.3 0.02642 + .0905	+74.2 +48.7 0.02649 + .0950	+51.1 , o.02657 +50.0 , o.02657 + o.0905	+53.4 0.02664 + .1039
		Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.
		120	125	130	135	140	145	150

	300°	+365.49. 717.4 4.235 1.3111	+367.81 717.8 4.074 1.3064	+370.1 718.2 3.923 1.3017	+372.2 718.8 3.787 1.2970	+374.2 719.3 3.660 1.2924	+376.3 719.7 3.538 1.2884	+378.3 720.2 3.425 1.2846
	250	+315.49 690.2 3.946 1.2762	+317.81 690.6 3.803 1.2717	+320.1 691.0 3.663 1.2669	H322.2 691.5 3.536 1.2625	F324.2 691.9 3.418 1.2582	+326.3 692.4 3.304 1.2542	+328.3 692.9 3.201 1.2504
	200°	+265.49 663.3 3.663	+267.81 663.6 3.531 1.2347	-270.1 663.9 3.402 1.2302	272.2 664.4 3.282 1.2260	-274.2 664.7 3.174 1.2216	+276.3 665.1 3.069 1.2177	+278.3 665.6 2.973 1.2141
	180	+245.49 652.5 3.549 1.2230	+247.81 652.8 3.422 1.2185	+250.1 653.1 3.297 1.2142	+252.2 653.5 3.180 1.2100	+254.2 653.8 3.075 1.2056	-256.3 654.2 2.974 1.2020	-258.3 654.7 2.881 1.1984
Continued	160*	+225.49 641.6 3.434 1.2072	+227.81 641.9 3.312 1.2030	+230.1 642.2 3.191 1.198	+232.2 642.6 3.078 1.194	-234.2 642.9 2.975 1.190	-236.3 643.3 2.876 1.1864	-238.3 643.8 2.788 1.1829
SUPERHEATED AMMONIA (Nos. 120 to 150). — Continued	150°	+215.49 636.2 3.385 1.1990	+217.81 636.5 3.257 1.1945	+220.1 636.8 3.138 1.1902	+222.2 637.2 3.027 1.1860	+224.2 637.5 2.927 1.1819	+226.3 637.8 2.832 1.1783	-228.3 638.3 2.740 1.1749
(Nos. 120	140	+205.49 630.8 3.328 1.1912	+207.81 631.1 3.202 1.1868	+210.1 631.4 3.084 1.1825	+212.2 631.8 2.975 1.1782	-214.2 632.1 2.877 1.174	-216.3 632.4 2.783 1.170	-218.3 632.9 2.693 1.166
MMONIA	130°	+195.49 625.5 3.271 1.1826	+197.81 625.7 3.146 1.1784	+200.1 626.0 3.031 1.1739	+202.2 626.4 2.924 • I.1699	+204.2 626.7 2.827 1.1658	•	+208.3 627.4 2.646 1.1586
EATED A	130	+185.49 620.1 3.213 1.1747	+187.81 620.4 3.090 1.1700	+190.1 620.7 2.977 1.1657	+192.2 621.0 2.872 1.1615	+194.2 621.3 2.776 1.1575	+196.3 621.6 2.685 1.1540	+198.3 622.0 2.598 1.1504
SUPERH	110	+175.49 614.8 3.154 1.1647	+177.81 615.0 3.034 1.1605	+180.1 615.3 2.923 1.1563	+182.2 615.6 2.819 1.1522	+184.2 615.9 2.726 1.1483	+186.3 616.2 2.636 1.1447	+188.3 616.5 2.550 1.1414
	Vapor	555.1 2.497 1.0592	555.2 2.400 1.0555	555-3 2-309 1.0517	555.5 2.227 1.0480	555.6 2.149 1.0444	555.7 2.076 1.0412	555.9 2.008 1.0381
	Liquid	+38.5 0.02618 + .0758	+41.1 +21.1 .02626 + .0808	+43.9 0.02634 + .0858	+72.2 +46.3 0.02642 + 0.0905	+74.2 +48.7 0.02649 + .0950		+53.4 0.02664 + .1039
		Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.
		130	125	130	135	140	145	150

_
80
ಭ
155
Nos.
_
11/
Ó
¥
A
ED
AT
HE
ER]
Ы

	100	+180.2 611.4 2.423 1.1291	+182.1 611.7 2.353 1.1259	+184.0 612.0 2.282 1.1228	+185.8 612.3 2.219 1.1198	+189.3 612.7 2.100 1.1141	+192.7 613.1 1.993 1.1084	+195.9 613.5 1.897 1.1032
	°06	+170.2 605.9 2.377 1.1208	+172.1 606.2 2.307 1.1177	+174.0 606.5 2.238 1.1145	+175.8 606.7 2.176 1.1114	+179.3 607.1 2.059 1.1057	+182.7 607.5 1.954 1.0999	+185.9 607.9 1.860 1.0947
	&	+160.2 600.4 2.330 1.1119	+162.1 600.6 2.261 1.1088	+164.0 600.9 2.193 1.1056	165.8 601.2 2.133 1.1025	-169.3 601.5 2.018 1.0968	-172.7 601.9 1.915 1.0910	+175.9 602.2 1.822 1.085
	•04	+150.2 594.8 2.283 1.1028	+152.1 595.1 2.215 1.0998	+154.0 595.4 2.149 1.0966	-155.8 595.6 2.090 1.093(159.3 596.0 1.976 1.088	.162.7 596.2 1.876 1.0824	165.9 596.6 1.785 1.077
- 1	.	+140.2 589.3 2.235 1.0933	+142.1 589.5 2.169 1.0901	+144.0 589.8 2.104 1.0870	145.8 590.1 2.046 1.0840	149.3 590.4 1.935 1.078	-152.7 590.6 1.836 1.072	+155.9 590.9 1.747 1.067;
SUPERHEATED AMMONIA (Nos. 155 to 200)	30	+130.2 583.8 2.188 1.0841	+132.1 584.0 2.122 1.0810	-134.0 584.3 2.059 1.0778	-135.8 584.5 2.002 1.0749	-139.3 584.8 1.892 1.009	.142.7 585.0 1.795 1.0639	F145.9 585.3 1.708 1.058
ONIA (NO	* 0 *	+120.2 578.2 2.139 1.0748	+122.1 578.4 2.076 1.0717	+124.0 578.7 2.013 1.068	-125.8 578.9 1.957 1.065	-129.3 579.1 1.850 1.060	+132.7 579.3 1.755 1.054	1
ED AMM	30°	+110.2 572.7 2.091 1.0648	+112.1 572.8 2.028 1.0618	573.1 1.968 1.058	573.3 1.912 1.055	573.5 1.807 1.050	122.7 573.6 1.714 1.044	-125.9 573.8 1.630 1.0397
PEKHEAT	30°	+100.2 567.1 2.043 1.0550	+102.1 567.3 1.981 1.0520	+104.0 567.5 1.921 1.048	+105.8 567.6 1.867 1.0460	+109.3 567.8 1.764 1.0405	+112.7 567.9 1.673 1.0350	+115.9 508.1 1.590 1.0299
	10	+ 90.2 561.6 1.993 1.0448	+ 92.1 561.7 1.983 1.0418	+ 94.0 561.9 1.875 1.0388	+ 95.8 562.0 1.822 1.0359	+ 99.3 562.2 1.721 1.0304	+102.7 562.2 1.631 1.0249	+105.9 562.3 1.550 1.0197
	Vapor	556.0 1.944 1.0348	556.1 1.885 1.0318	556.3 1.828 1.0288	556.4 1.776 1.0259	556.5 1.677 1.0204		
	Liquid	+55.7 +0.02671 + .1082	+82.1 +57.8 0.02678 + .1122	+84.0 +60.1 0.02685 + .1162	+85.8 +62.2 0.02692 + .1201	+89.3 +66.3 0.02705 + .1277	+92.7 +70.3 0.02718 + .1348	+74.1 0.02732 + .1414
		Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol. \$	Temp. Q Vol. \$	Temp. Q Vol. φ	Temp. Q Vol.	Temp. Q Vol.
-	j	155	8	165	170	18	8	8

					_	_	-	**
	300	+380.2 720.7 3.322 1.2805	+382.1 721.2 3.224 1.2768	+384.0 721.7 3.126 1.2733	+385.8 722.1 3.040 1.2699	+389.3 723.0 2.881 1.2634	+392.7 723.7 2.738 1.2569	+395.9 724.6 2.602 1.2512
	250	+330.2 693.3 3.102 1.2466	+332.1 693.7 3.011 1.2429	+334.0 694.2 2.920 1.2393	+335.8 694.7 2.839 1.2359	+339.3 695.4 2.690 1.2296	+342.7 696.1 2.556 1.2234	+345.9 696.9 2.433 1.2177
	300	+280.2 665.9 2.881 1.2103	+282.1 666.3 2.795 1.2068	+284.0 666.8 2.711 1.2033	+285.8 667.2 2.637 1.1999	+289.3 667.9 2.497 1.1937	+292.7 668.4 2.372 1.1878	+295.9 669.1 2.257 1.1822
	180	+260.2 655.0 2.791 1.1946	+262.1 655.3 2.708 1.1913	+264.0 655.8 2.627 1.1878	+265.8 656.2 2.555 1.1846	+269.3 656.9 2.410 1.1784	+272.7 657.4 2.298 1.1727	+275.9 658.1 2.186 1.1672
Continued	160°	+240.2 644.1 2.700 1.1792	+242.1 644.4 2.621 1.1758	+244.0. 644.9 2.543	+245.8 645.2 2.472 1.1692	+249.3 645.8 2.341 1.1634	+252.7 646.3 2.223 1.1574	+255.9 647.0 2.115
SUPERHEATED AMMONIA (Nos. 155 to 200). — Continued	150	+230.2 638.6 2.656 1.1711	+232.1 638.9 2.577 1.1678	+234.0 639.4 2.500 1.1645	+235.8 639.7 2.431 1.1612	+239.3 640.3 2.301 1.1554	+242.7 640.8 2.185 1.1497	+245.9 641.5 2.079 1.1442
(Nos. 155	140	+220.2 633.2 2.608 1.1632	+222.1 633.5 2.533 1.1598	+224.0 633.9 2.456 1.1566	+225.8 634.2 2.389 I.I534	+229.3 634.8 2.261 1.1474	+232.7 635.3 2.147 1.1417	+235.9 635.9 2.043 1.1363
MMONIA	130°	+210.2 627.7 2.562 1.1548	+212.1 628.0 2.488 1.1517	+214.0 628.4 2.413 1.1485	+215.8 628.7 2.347 1.1452	+219.3 629.3 2.221 1.1393	+222.7 629.7 2.109 1.1335	+225.9 630.3 2.007 1.1282
EATED A	130	+200.2 622.3 2.516 1.1468	+202.1 622.1 2.443 1.1436	+204.0 623.0 2.369 1.1401	+205.8 623.3 2.305 1.1370	+209.3 623.7 2.181 1.1313	+212.7 624.2 2.071 1.1254	+215.9 624.7 1.971 1.1202
SUPERH	110	+190.2 616.8 2.470 1.1378	+192.1 617.1 2.398 1.1346	+194.0 617.5 2.326 1.1313	+195.8 617.8 2.262 1.1281	+199.3 618.2 2.141 1.1224	+202.7 618.6 2.032 1.1169	+205.9 619.1 1.934 1.1117
	Vapor	556.0 1.944 1.0348	556.1 1.885 1.0318	556.3 1.828 1.0288	556.4 1.776 1.0259	556.5 1.677 1.0204	556.5 1.589 1.0149	556.6 1.510 1.0097
	Liquid	+86.2 +55.7 0.02671 + .1082	+82.1 +57.8 0.02678 + .1122	+84.0 +60.1 0.02685 + .1162	+62.2 0.02692 + .1201	+89.3 +66.3 0.02705 + .1277	+92.7 +79.3 0.027.18 + .1348	
		Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol. \$	Temp. Q Vol.	Temp. Q Vol. \$	Temp. Q Vol.
		155	160	165	170	81	0 0 1	8

_
6
270
10 to
0
210
``
Š
,2
Ž
_
K
=
Z
0
×
Ξ
4
4
\sim
H
ļΨ
Е
4
P
H
2
函
교
$\overline{}$

Temp. +99.0 556.5 562.3 1.477 Temp. +81.2 556.5 1.0048 1.0148 Temp. +81.2 556.5 1.0048 1.0148 Temp. +81.4 1.0003 1.0103 Temp. +84.6 556.4 562.3 Vol. 0.02769 1.312 1.0001 Temp. +87.9 556.3 562.3 Vol. 0.02782 1.256 1.0019 Temp. +87.9 556.3 562.3 Vol. 0.02784 1.204 Temp. +110.4 Temp. +110.4 Outlier o	30° 40° 50° 60° 70° 80° 90° 100°	+119.0 +129.0 +139.0 +149.0 +159.0 +169.0 +179.0 +189.0 +199.0 568.1 573.8 579.6 585.4 591.1 596.8 602.4 608.1 613.8 1.515 1.553 1.591 1.628 1.665 1.772 1.738 1.774 1.810 1.0252 1.0348 1.0443 1.0538 1.0629 1.0723 1.0810 1.08698 1.0884	+132.0 +142.0 +152.0 +162.0 +172.0 +182.0 +192.0 +202.0 568.2 574.0 579.9 585.7 591.4 597.1 602.7 608.4 614.1 1.446 1.483 1.519 1.555 1.591 1.652 1.661 1.696 1.730 1.0208 1.0303 1.0400 1.0493 1.0586 1.0678 1.0766 1.0854 1.0940	+134.9 +144.9 +154.9 +164.9 +174.9 +174.9 +184.9 +194.9 194.4 </th <th>+137.7 +147.7 +157.7 +167.7 +177.7 +187.7 +197.7<</th> <th>F130.4 +140.4 +150.4 +160.4 +170.4 +180.4 +190.4 +210.4 +210.4 507.9 572.9 579.8 585.7 501.5 507.3 603.1 608.9 614.7 1.273 1.306 1.339 1.372 1.404 1.436 1.446 1.499 1.530 1.0084 1.0176 1.0274 1.0369 1.0466 1.0556 1.0649 1.0736 1.0824</th> <th>F133.1 +143.1 +153.1 +163.1 +133.1 +163.1 +163.1 +163.1 +163.1 +133.1 +163.1 +133.1 +163.1 +133.1 +144.1 +144.1 +144.1 +144.1 +144.1 +144.1 +144.1 +144.1 +144.1 +144.1<</th> <th>1.35.6 +145.6 +155.6 +165.6 +175.6 +185.6 +195.6 +215.6 567.8 573.8 579.9 585.9 591.7 597.6 603.4 609.3 615.1 1.176 1.207 1.218 1.268 1.298 1.327 1.385 1.413</th>	+137.7 +147.7 +157.7 +167.7 +177.7 +187.7 +197.7<	F130.4 +140.4 +150.4 +160.4 +170.4 +180.4 +190.4 +210.4 +210.4 507.9 572.9 579.8 585.7 501.5 507.3 603.1 608.9 614.7 1.273 1.306 1.339 1.372 1.404 1.436 1.446 1.499 1.530 1.0084 1.0176 1.0274 1.0369 1.0466 1.0556 1.0649 1.0736 1.0824	F133.1 +143.1 +153.1 +163.1 +133.1 +163.1 +163.1 +163.1 +163.1 +133.1 +163.1 +133.1 +163.1 +133.1 +144.1 +144.1 +144.1 +144.1 +144.1 +144.1 +144.1 +144.1 +144.1 +144.1<	1.35.6 +145.6 +155.6 +165.6 +175.6 +185.6 +195.6 +215.6 567.8 573.8 579.9 585.9 591.7 597.6 603.4 609.3 615.1 1.176 1.207 1.218 1.268 1.298 1.327 1.385 1.413
D. +99.0	S	+ 14 88	+ 588	+ 588	+ 58	+1.0	+ 7.0	+ 38
Liquid Vapor 10° 20° 30° p. +99.0 +109.0 +119.0 +119.0 1.533 p. +77.7 556.5 562.3 568.1 573.8 p. +81.2 1.0048 1.0148 1.0348 1.0348 p. +81.2 556.5 562.3 568.2 574.0 p. +81.2 556.5 1.003 1.446 1.483 p. +81.2 1.371 1.003 1.446 1.483 p. +84.6 556.4 562.3 568.1 574.0 p. +87.9 1.23.2 1.130.4 1.130.4 p. +110.4 1.20.4	•04	+13	+14	+14	+ 5.5	+15	+15	+15
b. +77.7	30.	+129.0 573.8 1.553 1.0348	+13 57	+134.9 574.0 1.420 1.0259	+13	+140.4 572.9 1.306 1.0176	+14 57	+14 57
b. +99.0	.00	15	+122.0 568.2 1.446 1.0208	55.	26 123	+130.4 567.9 1.273 1.0084	55 44	9
b. +77.7 0.02744 + .1479 p. +81.2 0.02757 + .1541 p. +84.6 + .1562 + .1602 02769 + .1602 02782 + .1602 02782 + .1603 02782 + .1777 02866 + .1777 02866 + .1777	01	+109.0 562.3 1.477 1.0148	103	848	910	39	92	5
b. +77.7 0.02744 + .1479 p. +81.2 0.02757 + .1541 p. +84.6 + .1562 + .1602 02769 + .1602 02782 + .1602 02782 + .1603 02782 + .1777 02866 + .1777 02866 + .1777	Vapor	556.5 1.43 1.00	556.5 1.371 1.0003	556.4 1.312 0.9959	556.3 1.256 0.9916	556.0 1.204 0.9874	555.9 1.158 0.9834	555.7
Temp. Temp. Temp. Temp. Temp.	Liquid	ō.	+102. 757 41	4	Č.	. 110.		5.6
		Temp. Q Vol. •	Temp. Q Vol. ♦	Temp. Q Vol. ♦	Temp. Q Vol.	Temp. Q Vol. ♦	Temp. Q Vol.	Temp. Q Vol.

	300	+399.0 725.2 2.488 1.2458	+402.0 725.9 2.38 1.2411	+404.9 726.6 2.283 1.2364	+407.7 727.2 2.193 1.2321	+410.4 727.7 2.110 1.2281	+413.1 728.3 2.034 1.2244	+415.6 728.9 1.196 1.2210
	250	+349.0 697.4 2.322 1.2123	+352.0 698.0 2.221 1.2075	+354.9 698.5 2.131 1.2029	+357.7 699.1 2.046 1.1988	+360.4 699.4 1.969 1.1948	+363.1 699.9 1.898 1.1923	+365.6 700.4 1.835 1.1880
	300	+299.0 669.6 2.155 1.1773	+302.0 670.2 2.061 1.1728	+304.9 670.6 1.977 1.1682	+307.7 671.1 1.898 1.1641	+310.4 671.3 1.826 1.1604	-313.1 671.8 1.760 1.1529	+315.6 672.2 1.706 1.1537
	180	+279.0 658.5 2.087 1.1623	+282.0 659.0 1.997 1.1579	-284.9 659.4 1.915 1.1537	-287.7 659.9 1.838 1.1496	-290.4 660.1 1.768 1.1462	+293.1 660.6 1.704 1.1427	+295.6 660.9 1.654 1.1396
Continued	160	+259.0 647.4 2.019 1.1473	+262.0 647.9 1.931 1.1428	-264.9 648.3 1.852 1.1384	+267.7 648.7 1.777 1.134§	+270.4 648.9 1.710 1.1307	+273.1 649.3 1.647 1.1274	-275.6 649.6 1.601 1.1243
SUPERHEATED AMMONIA (Nos. 210 to 270). — Continued	150	+249.0 641.8 1.984 1.1393	+252.0 642.3 1.898 1.1350	+254.9 642.7 1.818 1.1309	+257.7 643.1 1.746 1.1268	+260.4 643.3 1.680 1.1233	+263.1 643.7 1.618 1.1200	+265.6 644.0 1.560 1.1169
(Nos. 210	140	+239.0 636.2 1.960 1.1314	636.7 1.865 1.1270	+244.9 637.0 1.787 1.1229	+247.7 637.4 . 1.716 1.1189	+250.4 637.6 1.651 1.115	F253.1 638.0 1.590 1.1118	-255.6 638.2 1.531 1.1087
AMMONIA	130	+229.0 630.6 1.915 1.1233	+232.0 631.0 1.832 1.1188	+234.9 631.4 1.755 1.1147	+237.7 631.7 1.685 1.1106	+240.4 631.9 1.621 1.107	+243.1 632.2 1.561 1.1037	+245.6 632.4 1.496 1.1005
EATED A	130	+219.0 625.0 1.877 1.1153	+222.0 625.4 1.798 1.1110	+224.9 625.7 1.723 1.1068	+227.7 626.1 1.654 1.1029	+230.4 626.1 1.591 1.0994	+233.1 626.5 1.532 1.0959	+235.6 626.7 1.469 1.0930
SUPERI	110	+209.0 619.4 1.845 1.1069	+212.0 619.7 1.764 1.0026	+214.9 620.1 1.690 1.0987	+217.7 620.4 1.623 1.0948	+220.4 620.4 1.560 1.0914	+223.1 620.7 1.503 1.0879	+225.6 620.9 1.441 1.0848
	Vapor	556.5 1.438 1.0048	.o 556.5 1.371 1,0003	.9 556.4 1.312 0.9959	.7 556.3 1.256 0.9916	4 556.0 1.204 0.9874	555.9 1.158 0.9834	.6 555.7 1.11.3 0.9795
	Liquid	+77 7 0.02744 + .1479	+81.2 0.02757 + .1541	+104.9 +84.6 0.02769 + .1602	+107.7 +87.9 0.02782 + .1660	+91.1 +91.1 0.02794 + .1717	+113.1 +94.2 0.02806 + .1771	+115.6 +97.2 0.02817 + .1824
.		Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.
		210	220	230	240	250	260	270

8
ಚ
8
(Nos.
VINC
AMM
TED.
HEA
JPER

Temp. Hoo. 2 1918					S	UPERHEA	NTED AM	MONIA (!	SUPERHEATED AMMONIA (Nos. 280 to 400)	(00)				
Temp. +118.1 +128.2 +128.2<			Liquid	Vapor	10°	°0¢	30.	40.	20	• 09	•04	°08	8	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	Temp. Q Vol.	+118. +100.2 0.02828 + .1876	555.5 1.0,0	+128.1 561.6 1.104 0.9866	+1.	+14	+15	+168.1 585.9 1.226 1.0262	+178.1 591.8 1.256 1.0363	+18 59	+198.1 603.5 1.314 1.0550	+208.1 609.4 1.342 1.0637	+218.1 615.3 1.370 1.0729
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	Temp. Q Vol.	+105.9 0.02851 + .1976	6 555.0 0.998 0.986	+132.9 561.2 1.028 0.9796	+14 56	\$ 58	+162.9 579.7 1.117	+172.9 585.9 1.145	80	+192.9 597.8 1.201 1.0409	+202.9 603.7 1.229 1.0495	~ & . +	+222.9 615.6 1.282 1.0676
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	330	Temp. Q Vol. \$	+111.3 0.02873 + .2069	4 554.5 0.932 .9614	+137.4 560.8 0.961 .9726	+ 20	+157.4 573.3 1.018 0.9934	+167.4 578.5 1.045 1.0040	+177.4 585.8 1.072 1.0143	+187.4 591.8 1.099 1.0247	+197.4 597.8 1.126 1.0342	200	7 27	+227.4 615.8 1.202 1.0633
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	340	Temp. Q Vol.	+116.7 0.02894 + .2160	8 554.1 0.876 .9550	+141.8 560.5 0.904 -9665	+ 151	+ 25		585.9 1.010 1.0000	68 108	+201.8 598.0 1.062 1.0292	+211.8 604.1 1.086 1.0394	+221.8 610.1 1.110 1.0483	+231.8 616.2 1.135 1.0582
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	360		+135.0 +121.6 0.02910 + .2245	553.4 0.824 .9489	+145.9 559.9 0.851 .9600	+155.9 566.3 0.877 -9719	+165 571 0	+175.9 579.2 0.928	585.7 0.953 1.0041	51	[∺] 6	+215.9 604.1 1.025 1.0354	+22 61	+235.9 616.4 1.071 1.0545
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	380		+126.5 0.02938 + .2326	8 552.8 0.777 .9432	+149.8 559.4 0.803	+159.8 565.9 0.828 0.9664	+169.8 571.5 0.853 .978	.179.8 579.0 0.877 9890	-189.8 585.6 0.901 1.0000	F199.8 591.8 0.925 1.0110	+200.8 598.0 0.948	+219.8 604.2 0.971 1.0318	+	
	8	Temp. Q Vol.	+131.1 0.02958 + .2404	, 552.0 0.736 9376	+153.7 558.6 0.761 .9501	+163.7 565.2 0.785 0.9616	+173.7 571.8 0.809 -973	.183.7 578.4 0.833 .9840	-193.7 585.3 0.856 .9961	F203.7 591.6 0.879 1.0071	+213.7 597.9 0.901 1.0189	4	+233.7 610.4 0.945 1.0386	+243.7 616.7 0.966 1.0488

				SUPER	HEATED	AMMONI	SUPERHEATED AMMONIA (Nos. 280 to 400). — Continued	o to 400). —	Continued				
		Liquid	Vapor	110	130	130°	140°	150	160	180°	300	250°	300
280	Temp. Q Vol.	+118.1 +100.2 0.02828 + 1.876	555.5 1.072 0.9757	+228.1 621.1 1.398 1.0819	+238.1 626.9 1.426 1.0900	+248.1 632.7 1.453 1.0977	+258.1 638.5 1.479 1.1059	+268.1 644.3 1.506 1.1140	+278.1 650.0 1.532 1.1214	+298.1 661.3 1.585 1.1369	+318.1 672.6 1.636 1.1508	+368.1 700.8 1.762 1.1841	+418.1 729.4 1.896 1.2177
8	Temp. Q Vol.	+105.9 +05.9 0.02851 + .1976	. 555.0 0.998 9.9686	+232.9 621.4 1.309 1.0768	+242.9 627.3 1.335 1.0851	+252.9 633.1 1.361 1.0926	+262.9 639.0 1.386 1.1009	+272.9 644.8 1.410 1.1089	+282.9 650.5 1.437 1.1165	+302.9 661.9 1.488 1.1319	+322.9 673.3 1.536 1.1461	+372.9 701.6 1.657 1.1801	+422.9 730.4 1.777 1.2126
320	Temp. Q Vol.	+117.4 +111.3 0.02873 + .2069	554.5 0.932 .9614	+237.4 621.7 1.227 1.0719	+247.4 627.6 1.252 1.0802	+257.4 633.6 1.276 1.0881	+267.4 639.5 1.300 1.0963	+277.4 645.4 1.324 1.1044	+287.4 651.1 1.348 1.1118	+307.4 662.6 1.395 1.1284	+327.4 674.1 1.442 1.1417	+377.4 702.4 I.557 I.1754	+427.4 731.4 1.671
2 5	Temp. Q Vol.	+131.8 +116.7 0.02894 + .2160	554.1 0.876 .9550	+241.8 622.2 1.168 1.0680	+251.8 628.1 1.181 1.0764	+261.8 634.1 1.205 1.0844	+271.8 640.0 1.227 1.0926	+281.8 646.0 1.250 1.1008	+291.8 651.8 1.273 1.1084	+311.8 663.4 1.317 1.1240	+331.8 675.0 1.360 1.1385	+381.8 703.3 1.467	+431.8 732.5 1.579 1.2038
36	Temp. Q Vol.	+135.9 +121.6 0.02910 + .2245	553.4 0.824 .9489	+245.9 622.4 1.094 1.0642	+255.9 628.4 1.116 1.0729	+265.9 634.4 1.139 1.0812	+275.9 640.4 1.160 1.0896	+285.9 646.4 1.182 1.0979	+295.9 652.2 1.204 1.1057	+315.9 663.9 1.248 1.1214	+335.9 675.5 1.291 1.1359	+385.9 703.9 1.395 1.1693	+435.9 · 733.2 I.496 I.2008
8	Temp. Q Vol.	+139.8 +126.5 0.02938 + .2326	552.8 0.777 .9432	+249.8 622.6 1.037 1.0613	F259.8 628.7 1.059 1.0702	269.8 634.7 1.080 1.0790	+279.8 640.8 1.101 1.0874	+289.8 646.8 1.122 1.0957	+299.8 652.7 1.143 1.1037	+319.8 664.4 1.184 1.1195	+339.8 676.2 1.225 1.1342	+389.8 704.5 1.325 1.1676	+439.8 734.3 1.422 1.1987
8	Temp. Q Vol.	+143.7 +131.1 0.02958 + .2404	552.0 0.736 .9376	+253.7 622.8 0.987 1.0586	F263.7 628.9 1.008 1.0676	273.7 634.9 1.029 1.0771	+283.7 641.0 1.049 1.0858	+293.7 647.1 1.069 1.0944	+303.7 653.0 1.102	+323.7 664.9 1.141 1.1181	+343.7 676.7 1.179 1.1328	+393.7 705.1 1.259 1.1666	+443.7 735.1 1.355 1.1971

·•		·				
			٠			
				,		
	,				·	

